Skip to content

spatial_cluster

Short Description

sm.tl.spatial_cluster: This function allows users to cluster the spatial neighbourhood matrix genereated by either sm.tl.spatial_expression, sm.tl.spatial_count, sm.tl.spatial_lda etc.

Function

spatial_cluster(adata, df_name='spatial_count', method='kmeans', k=10, n_pcs=None, resolution=1, phenograph_clustering_metric='euclidean', nearest_neighbors=30, random_state=0, label=None, output_dir=None)

Parameters:

Name Type Description Default
adata

AnnData object loaded into memory or path to AnnData object.

required
df_name string

Label of the spatial analysis performed. By default if sm.tl.spatial_count was run the results will be saved under spatial_count and if sm.tl.spatial_expression was run, the results will be saved under spatial_expression.

'spatial_count'
method string

Clustering method to be used- Implemented methods- kmeans, phenograph and leiden.

'kmeans'
k int

Number of clusters to return when using K-Means clustering.

10
phenotype string

The column name that contains the cluster/phenotype information.

required
n_pcs int

Number of PC's to be used in leiden clustering. By default it uses all PC's.

None
resolution float

A parameter value controlling the coarseness of the clustering. Higher values lead to more clusters.

1
phenograph_clustering_metric string

Distance metric to define nearest neighbors. Note that performance will be slower for correlation and cosine. Available methods- cityblock’, ‘cosine’, ‘euclidean’, ‘manhattan’, braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’

'euclidean'
nearest_neighbors int

Number of nearest neighbors to use in first step of graph construction. This parameter is used both in leiden and phenograph clustering.

30
random_state int

Change the initialization of the optimization.

0
label string

Key or optional column name for the returned data, stored in adata.obs. The default is adata.obs [spatial_method used].

None
output_dir string

Path to output directory.

None

Returns:

Name Type Description
adata

AnnData Object
Returns an updated anndata object with a new column. check- adata.obs [spatial_method used]

1
    adata = sm.tl.spatial_cluster (adata, k= 10, method = 'kmeans') # results will be saved under adata.obs['spatial_kmeans']
Source code in scimap/tools/_spatial_cluster.py
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def spatial_cluster (adata, df_name='spatial_count', method = 'kmeans',k=10,
                     n_pcs=None, resolution=1, phenograph_clustering_metric='euclidean', 
                     nearest_neighbors=30, random_state=0,label=None, output_dir=None):
    """


Parameters:
    adata : AnnData object loaded into memory or path to AnnData object.

    df_name (string):  
        Label of the spatial analysis performed.
        By default if `sm.tl.spatial_count` was run the results will be saved under `spatial_count` and
        if `sm.tl.spatial_expression` was run, the results will be saved under `spatial_expression`.

    method (string):  
        Clustering method to be used- Implemented methods- kmeans, phenograph and leiden.

    k (int):  
        Number of clusters to return when using K-Means clustering.

    phenotype (string):  
        The column name that contains the cluster/phenotype information.

    n_pcs (int):  
        Number of PC's to be used in leiden clustering. By default it uses all PC's.

    resolution (float):  
        A parameter value controlling the coarseness of the clustering. 
        Higher values lead to more clusters.

    phenograph_clustering_metric (string):  
        Distance metric to define nearest neighbors. Note that performance will be slower for correlation and cosine. 
        Available methods- cityblock’, ‘cosine’, ‘euclidean’, ‘manhattan’, braycurtis’, ‘canberra’, ‘chebyshev’, 
        ‘correlation’, ‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, 
        ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’

    nearest_neighbors (int):  
        Number of nearest neighbors to use in first step of graph construction. 
        This parameter is used both in leiden and phenograph clustering.

    random_state (int):  
        Change the initialization of the optimization.

    label (string):  
        Key or optional column name for the returned data, stored in `adata.obs`. The default is adata.obs [spatial_method used].

    output_dir (string):  
        Path to output directory.

Returns:
    adata : AnnData Object  
        Returns an updated anndata object with a new column. check- adata.obs [spatial_method used]

Example:
```python
    adata = sm.tl.spatial_cluster (adata, k= 10, method = 'kmeans') # results will be saved under adata.obs['spatial_kmeans']
```
    """

    # Load the andata object    
    if isinstance(adata, str):
        imid = str(adata.rsplit('/', 1)[-1])
        adata = ad.read(adata)
    else:
        adata = adata

    # Make a copy of adata to modify
    adata_copy = adata.copy()

    # Error check
    try:
        adata_copy.uns[df_name]
    except KeyError:
        print (str('Supplied df_name not found, please run `sm.tl.spatial_expression` or LDA, counts or other similar methods'))

    # Crete a new anndata object with the user defined spatial information
    adata_new = ad.AnnData(adata_copy.uns[df_name].fillna(0))
    adata_new.obs = adata_copy.obs

    # Create a meaningful label name
    if label is None:
        label = 'spatial_' + str(method)

    # Run the clustering algorithm
    adata_new = cluster (adata = adata_new,
                         method = method,
                         k=k, 
                         n_pcs=n_pcs, 
                         resolution=resolution,
                         phenograph_clustering_metric=phenograph_clustering_metric,
                         nearest_neighbors=nearest_neighbors, 
                         use_raw=False, 
                         random_state=random_state,
                         label=label)

    # Get the clusters and append that to original adata object
    result = adata_new.obs[label]
    result = result.reindex(adata.obs.index)
    adata.obs[label] = result


    # Save data if requested
    if output_dir is not None:
        output_dir = pathlib.Path(output_dir)
        output_dir.mkdir(exist_ok=True, parents=True)
        adata.write(output_dir / imid)
    else:    
        # Return data
        return adata