Skip to content

foldchange

Short Description

sm.pl.foldchange: The Function allows users to visualize foldchange in abundance of celltypes between samples/ROI's. Run sm.tl.foldchange first to compute the foldchange.

Function

foldchange(adata, label='foldchange', p_val=0.05, nonsig_color='grey', subset_xaxis=None, subset_yaxis=None, cmap='vlag', log=True, center=0, method='heatmap', invert_axis=None, parallel_coordinates_color=None, matplotlib_bbox_to_anchor=(1.04, 1), matplotlib_legend_loc='upper left', xticks_rotation=90, return_data=False, **kwargs)

Parameters:

Name Type Description Default
adata

Anndata object

required
label strong

label used when running sm.tl.foldchange.

'foldchange'
p_val float

p_val cut-off above which is considered not-significant. The cells containing non-significant changes will be highlighted in the heatmap.

0.05
nonsig_color string

Color used to highlight non-significant fold changes in the heatmap.

'grey'
subset_xaxis list

Subset x-axis before plotting. Pass in a list of categories. eg- subset_xaxis = ['CelltypeA', 'CellTypeB'].

None
subset_yaxis list

Subset y-axis before plotting. Pass in a list of categories. eg- subset_yaxis = ['ROI_1', 'ROI_5'].

None
cmap string

Color map. Can be a name or a Colormap instance (e.g. 'magma', 'viridis').

'vlag'
log bool

Convert foldchange to log2 scale.

True
center float

The center value to be used in heatmap.

0
method string

Two methods are available for plotting the foldchanges
a) Heatmap: Use heatmap
b) parallel coordinates plot : Use parallel_coordinates

'heatmap'
invert_axis bool

Flip the axis of the plot.

None
parallel_coordinates_color list

Custom colors for each category.

None
matplotlib_bbox_to_anchor tuple

Bounding box argument used along with matplotlib_legend_loc to control the legend location when using the matplotlib method.

(1.04, 1)
matplotlib_legend_loc TYPE

Location of legend used along with matplotlib_bbox_to_anchor to control the legend location when using the matplotlib method.

'upper left'
xticks_rotation int

Angle the x-axis ticks.

90
return_data bool

Return the final data used for plotting.

False
**kwargs

Additional keyword arguments passed to:
a) sns.clustermap
b) pandas.parallel_coordinates

{}

Returns:

Name Type Description
Plot

Data used for the plot if return_data = True

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
    # Heatmap of foldchnage  
    sm.pl.foldchange (adata, label='foldchange', method='heatmap',
                     p_val=0.05, nonsig_color='grey',
                     cmap = 'vlag', log=True, center=0, linecolor='black',linewidths=0.7,
                     vmin=-5, vmax=5, row_cluster=False)

    # Parallel_coordinates plot of the foldchanges
    foldchange (adata, label='foldchange', 
                log=True, method='parallel_coordinates', invert_axis=True,
                parallel_coordinates_color=['black','blue','green','red','#000000'],
                matplotlib_bbox_to_anchor=(1.04,1),
                matplotlib_legend_loc='upper left',
                xticks_rotation=90,
                return_data = False
Source code in scimap/plotting/_foldchange.py
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
def foldchange (adata, label='foldchange', 
                p_val=0.05, nonsig_color='grey',subset_xaxis=None,subset_yaxis=None,
                cmap = 'vlag', log=True,center=0, 
                method='heatmap', invert_axis=None,
                parallel_coordinates_color=None,matplotlib_bbox_to_anchor=(1.04,1),
                matplotlib_legend_loc='upper left',xticks_rotation=90,
                return_data = False,
                **kwargs):
    """
Parameters:
    adata : Anndata object

    label (strong):  
        label used when running `sm.tl.foldchange`.

    p_val (float):  
        p_val cut-off above which is considered not-significant. The cells containing
        non-significant changes will be highlighted in the heatmap.

    nonsig_color (string):  
        Color used to highlight non-significant fold changes in the heatmap.

    subset_xaxis (list):  
        Subset x-axis before plotting. Pass in a list of categories. eg- subset_xaxis = ['CelltypeA', 'CellTypeB']. 

    subset_yaxis (list):  
        Subset y-axis before plotting. Pass in a list of categories. eg- subset_yaxis = ['ROI_1', 'ROI_5']. 

    cmap (string):  
        Color map. Can be a name or a Colormap instance (e.g. 'magma', 'viridis').

    log (bool):  
        Convert foldchange to log2 scale.

    center (float):  
        The center value to be used in heatmap.

    method (string):  
        Two methods are available for plotting the foldchanges  
        a) Heatmap: Use `heatmap`  
        b) parallel coordinates plot : Use `parallel_coordinates`  

    invert_axis (bool):  
        Flip the axis of the plot.

    parallel_coordinates_color (list): 
        Custom colors for each category.

    matplotlib_bbox_to_anchor (tuple):  
        Bounding box argument used along with matplotlib_legend_loc to control
        the legend location when using the matplotlib method.

    matplotlib_legend_loc (TYPE):  
        Location of legend used along with matplotlib_bbox_to_anchor to control
        the legend location when using the matplotlib method.

    xticks_rotation (int):  
        Angle the x-axis ticks.

    return_data (bool):  
        Return the final data used for plotting.

    **kwargs : Additional keyword arguments passed to:  
        a) sns.clustermap  
        b) pandas.parallel_coordinates  

Returns:
    Plot:  
        Data used for the plot if `return_data = True`

Example:
```python
    # Heatmap of foldchnage  
    sm.pl.foldchange (adata, label='foldchange', method='heatmap',
                     p_val=0.05, nonsig_color='grey',
                     cmap = 'vlag', log=True, center=0, linecolor='black',linewidths=0.7,
                     vmin=-5, vmax=5, row_cluster=False)

    # Parallel_coordinates plot of the foldchanges
    foldchange (adata, label='foldchange', 
                log=True, method='parallel_coordinates', invert_axis=True,
                parallel_coordinates_color=['black','blue','green','red','#000000'],
                matplotlib_bbox_to_anchor=(1.04,1),
                matplotlib_legend_loc='upper left',
                xticks_rotation=90,
                return_data = False
```
    """

    # set color for heatmap
    #cmap_updated = copy.copy(matplotlib.cm.get_cmap(cmap))
    cmap_updated = matplotlib.cm.get_cmap(cmap)
    cmap_updated.set_bad(color=nonsig_color)


    # get the data
    fc = adata.uns[str(label)+'_fc']
    p = adata.uns[str(label)+'_pval']

    #fold
    fold = fc.copy()
    p_mask = p.copy()

    # reference image
    ref = fold.index.name

    # log
    if log is True:
        fold = np.log2(fold)

    # create a mask for non-sig values
    p_mask[p_mask > p_val] = np.nan

    # subset x axis data
    if subset_xaxis is not None:
        if isinstance (subset_xaxis, str):
            subset_xaxis = [subset_xaxis]
        fold = fold [subset_xaxis]
        p_mask = p_mask [subset_xaxis]
        #reorder

    # subset y axis data
    if subset_yaxis is not None:
        if isinstance (subset_yaxis, str):
            subset_yaxis = [subset_yaxis]
        fold = fold.loc [subset_yaxis]
        p_mask = p_mask.loc [subset_yaxis]
        #reorder

    # invert axis if user requests
    if invert_axis is True:
        fold = fold.T
        p_mask = p_mask.T

    #mask
    mask = p_mask.isnull() # identify the NAN's for masking 

    if method == 'heatmap':
        # heatmap of the foldchange
        #g= sns.clustermap(fold, cmap=cmap, mask=mask, center=center, col_cluster=False, row_cluster=False)
        g= sns.clustermap(fold, cmap=cmap, mask=mask, center=center, **kwargs)
        plt.suptitle('reference: '+ str(ref))
        plt.setp(g.ax_heatmap.get_xticklabels(), rotation=xticks_rotation)
        plt.tight_layout()


    if method == 'parallel_coordinates':
        fold['sample'] = fold.index
        # plotting
        fig, axes = plt.subplots()
        if parallel_coordinates_color is not None:
            parallel_coordinates(fold, 'sample', color=parallel_coordinates_color, **kwargs)
        else:
            #parallel_coordinates(fold, 'sample', colormap=cmap_updated)
            parallel_coordinates(fold, 'sample', colormap=cmap_updated, **kwargs)
        axes.grid(False)
        plt.legend(bbox_to_anchor=matplotlib_bbox_to_anchor, loc=matplotlib_legend_loc)
        plt.axhline(y=0, color='black', linestyle='-')
        plt.xticks(rotation = xticks_rotation)
        plt.suptitle('reference: '+ str(ref))
        fig.tight_layout()

    # return data
    if return_data is True:
        return fold