21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218 | def spatial_interaction (adata, spatial_interaction='spatial_interaction',
summarize_plot=True, p_val=0.05,
row_cluster=False, col_cluster=False,
cmap = 'vlag', nonsig_color='grey',
subset_phenotype=None, subset_neighbour_phenotype=None,
binary_view=False, return_data=False, **kwargs):
"""
Parameters:
adata : AnnData object
spatial_interaction : string, optional
In order to locate the spatial_interaction data within the AnnData object please provide the output
label/columnname of `sm.tl.spatial_interaction` function.
summarize_plot : bool, optional
In the event of analyzing multiple images, this argument allows users to
plot the average cell-cell interaction across all images.
p_val : float, optional
P-value cut-off above which interactions are not considered significant.
row_cluster : bool, optional
Cluster Rows.
col_cluster : bool, optional
Cluster Columns.
subset_phenotype : list, optional
If user requires to visualize a subset of phenotypes, it can be passed here.
e.g. `subset_phenotype = ['celltype_A', 'celltype_B']`.
subset_neighbour_phenotype : list, optional
If user requires to visualize a subset of interacting phenotypes, it can be passed here.
e.g. `subset_neighbour_phenotype = ['celltype_C', 'celltype_D']`.
cmap : string, optional
Color map to use for continous variables.
Can be a name or a Colormap instance (e.g. 'magma', 'viridis').
nonsig_color : string, optional
Color for non-significant interactions (Interactions above the P-value cut-off will use this color).
binary_view : bool, optional
Removes the intensity of intreaction and plots significant interactions and avoidance in a binary format.
return_data : bool, optional
When True, return the data used for plotting.
**kwargs : key:value pairs
Pass other parameters that works with `sns.clustermap`. e.g. `linecolor='black'`
Example:
```python
# spatial_interaction heatmap for a single image
sm.pl.spatial_interaction(adata, summarize_plot=True,
row_cluster=True, linewidths=0.75, linecolor='black')
# spatial_interaction heatmap for multiple images
sns.set(font_scale=0.6)
sm.pl.spatial_interaction(adata, summarize_plot=False,
row_cluster=True, col_cluster=True, yticklabels=True)
```
"""
# set color for heatmap
#cmap_updated = copy.copy(matplotlib.cm.get_cmap(cmap))
cmap_updated = matplotlib.cm.get_cmap(cmap)
cmap_updated.set_bad(color=nonsig_color)
# Copy the interaction results from anndata object
try:
interaction_map = adata.uns[spatial_interaction].copy()
except KeyError:
raise ValueError('spatial_interaction not found- Please run sm.tl.spatial_interaction first')
# subset the data if user requests
if subset_phenotype is not None:
if isinstance(subset_phenotype, str):
subset_phenotype = [subset_phenotype]
# subset the phenotype
interaction_map = interaction_map[interaction_map['phenotype'].isin(subset_phenotype)]
if subset_neighbour_phenotype is not None:
if isinstance(subset_neighbour_phenotype, str):
subset_neighbour_phenotype = [subset_neighbour_phenotype]
# subset the phenotype
interaction_map = interaction_map[interaction_map['neighbour_phenotype'].isin(subset_neighbour_phenotype)]
# Seperate Interaction intensity from P-value
p_value = interaction_map.filter(regex='pvalue_')
p_val_df = pd.concat([interaction_map[['phenotype','neighbour_phenotype']], p_value], axis=1, join='outer')
p_val_df = p_val_df.set_index(['phenotype','neighbour_phenotype'])
interaction_map = interaction_map[interaction_map.columns.difference(p_value.columns)]
interaction_map = interaction_map.set_index(['phenotype','neighbour_phenotype'])
# Binarize the values if user requests
if binary_view == True:
interaction_map[interaction_map > 0] = 1
interaction_map[interaction_map <= 0] = -1
if summarize_plot == True:
# convert first two columns to multi-index column
#interaction_map = interaction_map.set_index(['phenotype','neighbour_phenotype'])
#p_val_df = p_val_df.set_index(['phenotype','neighbour_phenotype'])
# If multiple images are present, take the average of interactions
interaction_map['mean'] = interaction_map.mean(axis=1).values
interaction_map = interaction_map[['mean']] # keep only the mean column
interaction_map = interaction_map['mean'].unstack()
# Do the same for P-values
p_val_df['mean'] = p_val_df.mean(axis=1).values
p_val_df = p_val_df[['mean']] # keep only the mean column
# set the P-value threshold
p_val_df.loc[p_val_df[p_val_df['mean'] > p_val].index,'mean'] = np.NaN
p_val_df = p_val_df['mean'].unstack()
# change to the order passed in subset
if subset_phenotype is not None:
interaction_map = interaction_map.reindex(subset_phenotype)
p_val_df = p_val_df.reindex(subset_phenotype)
if subset_neighbour_phenotype is not None:
interaction_map = interaction_map.reindex(columns=subset_neighbour_phenotype)
p_val_df = p_val_df.reindex(columns=subset_neighbour_phenotype)
# Plotting heatmap
mask = p_val_df.isnull() # identify the NAN's for masking
im = interaction_map.fillna(0) # replace nan's with 0 so that clustering will work
# heatmap
sns.clustermap(im, cmap=cmap, row_cluster=row_cluster, col_cluster=col_cluster, mask=mask, **kwargs)
else:
if len(interaction_map.columns) < 2:
raise ValueError('Data for only a single image is available please set summarize_plot=True and try again')
# convert first two columns to multi-index column
#interaction_map = interaction_map.set_index(['phenotype','neighbour_phenotype'])
#p_val_df = p_val_df.set_index(['phenotype','neighbour_phenotype'])
# P value threshold
p_val_df = p_val_df.apply(lambda x: np.where(x > p_val,np.nan,x))
# Remove rows that are all nan
idx = p_val_df.index[p_val_df.isnull().all(1)] # Find all nan rows
interaction_map = interaction_map.loc[interaction_map.index.difference(idx)] # clean intensity data
p_val_df = p_val_df.loc[p_val_df.index.difference(idx)] # clean p-value data
# order the plot as needed
if subset_phenotype or subset_neighbour_phenotype is not None:
interaction_map.reset_index(inplace=True)
p_val_df.reset_index(inplace=True)
if subset_phenotype is not None:
interaction_map['phenotype'] = interaction_map['phenotype'].astype('category')
interaction_map['phenotype'] = interaction_map['phenotype'].cat.reorder_categories(subset_phenotype)
interaction_map = interaction_map.sort_values('phenotype')
# Do same for Pval
p_val_df['phenotype'] = p_val_df['phenotype'].astype('category')
p_val_df['phenotype'] = p_val_df['phenotype'].cat.reorder_categories(subset_phenotype)
p_val_df = p_val_df.sort_values('phenotype')
if subset_neighbour_phenotype is not None:
interaction_map['neighbour_phenotype'] = interaction_map['neighbour_phenotype'].astype('category')
interaction_map['neighbour_phenotype'] = interaction_map['neighbour_phenotype'].cat.reorder_categories(subset_neighbour_phenotype)
interaction_map = interaction_map.sort_values('neighbour_phenotype')
# Do same for Pval
p_val_df['neighbour_phenotype'] = p_val_df['neighbour_phenotype'].astype('category')
p_val_df['neighbour_phenotype'] = p_val_df['neighbour_phenotype'].cat.reorder_categories(subset_neighbour_phenotype)
p_val_df = p_val_df.sort_values('neighbour_phenotype')
if subset_phenotype and subset_neighbour_phenotype is not None:
interaction_map = interaction_map.sort_values(['phenotype', 'neighbour_phenotype'])
p_val_df = p_val_df.sort_values(['phenotype', 'neighbour_phenotype'])
# convert the data back into multi-index
interaction_map = interaction_map.set_index(['phenotype', 'neighbour_phenotype'])
p_val_df = p_val_df.set_index(['phenotype', 'neighbour_phenotype'])
# Plotting heatmap
mask = p_val_df.isnull() # identify the NAN's for masking
im = interaction_map.fillna(0) # replace nan's with 0 so that clustering will work
mask.columns = im.columns
# covert the first two columns into index
# Plot
sns.clustermap(im, cmap=cmap, row_cluster=row_cluster, col_cluster=col_cluster, mask=mask, **kwargs)
if return_data is True:
# perpare data for export
map_data = interaction_map.copy()
p_val_data = mask.copy()
map_data.reset_index(inplace=True)
p_val_data.reset_index(inplace=True)
# remove the first two colums
map_data = map_data.drop(['phenotype','neighbour_phenotype'],axis=1)
p_val_data = p_val_data.drop(['phenotype','neighbour_phenotype'],axis=1)
p_val_data.columns = map_data.columns
# remove the mased values
final_Data = map_data.where(~p_val_data, other=np.nan)
final_Data.index = interaction_map.index
return final_Data
|