Skip to content

spatial_cluster

Short Description

sm.tl.spatial_cluster: This function clusters cells based on their spatial neighborhood matrices, which can be derived from analyses such as sm.tl.spatial_expression, sm.tl.spatial_count, or sm.tl.spatial_lda. By leveraging various clustering algorithms, including k-means, phenograph, and leiden, it enables the identification of spatially coherent cell groups or microenvironments within tissue sections.

Function

spatial_cluster(adata, df_name='spatial_count', method='kmeans', k=10, n_pcs=None, resolution=1, phenograph_clustering_metric='euclidean', nearest_neighbors=30, random_state=0, label=None, verbose=True, output_dir=None)

Parameters:

Name Type Description Default
adata AnnData

Annotated data matrix or path to an AnnData object, containing spatial gene expression data.

required
df_name str

Specifies the label of the spatial analysis results to use for clustering. Default options are 'spatial_count' and 'spatial_expression'.

'spatial_count'
method str

The clustering method to apply. Supported methods include 'kmeans', 'phenograph', and 'leiden'.

'kmeans'
k int

Number of clusters to form when using K-Means clustering. Applies only if method='kmeans'.

10
n_pcs int

Number of principal components to use in 'leiden' clustering. If None, all components are used.

None
resolution float

Controls the granularity of clustering. Higher values lead to more clusters. Applies to 'leiden' and 'phenograph'.

1
phenograph_clustering_metric str

The metric for defining nearest neighbors in 'phenograph' clustering. Choices include 'euclidean', 'manhattan', 'cosine', etc.

'euclidean'
nearest_neighbors int

Number of nearest neighbors to consider in the graph construction step, for 'leiden' and 'phenograph'.

30
random_state int

Seed for random number generation, ensuring reproducible results.

0
label str

Custom label for storing results in adata.obs. Defaults to method name (e.g., 'spatial_kmeans').

None
verbose bool

If set to True, the function will print detailed messages about its progress and the steps being executed.

True
output_dir str

Directory path for saving output files. If None, results are not saved to disk.

None

Returns:

Name Type Description
adata AnnData

The input adata object updated with clustering results in adata.obs[label].

Example
1
2
3
4
5
6
7
8
# Apply K-Means clustering
adata = sm.tl.spatial_cluster(adata, df_name='spatial_count', method='kmeans', k=10, label='cluster_kmeans')

# Apply Leiden clustering with specific resolution and principal components
adata = sm.tl.spatial_cluster(adata, df_name='spatial_expression', method='leiden', resolution=0.5, n_pcs=20, label='cluster_leiden')

# Apply Phenograph clustering with a specific metric and nearest neighbors
adata = sm.tl.spatial_cluster(adata, df_name='spatial_lda', method='phenograph', phenograph_clustering_metric='manhattan', nearest_neighbors=15, label='cluster_phenograph')
Source code in scimap/tools/spatial_cluster.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def spatial_cluster (adata, 
                     df_name='spatial_count', 
                     method = 'kmeans',
                     k=10,
                     n_pcs=None, 
                     resolution=1, 
                     phenograph_clustering_metric='euclidean', 
                     nearest_neighbors=30, 
                     random_state=0,
                     label=None, 
                     verbose=True,
                     output_dir=None):
    """


Parameters:
        adata (anndata.AnnData):  
            Annotated data matrix or path to an AnnData object, containing spatial gene expression data.

        df_name (str):  
            Specifies the label of the spatial analysis results to use for clustering. Default options are 'spatial_count' and 'spatial_expression'.

        method (str):  
            The clustering method to apply. Supported methods include 'kmeans', 'phenograph', and 'leiden'.

        k (int):  
            Number of clusters to form when using K-Means clustering. Applies only if method='kmeans'.

        n_pcs (int, optional):  
            Number of principal components to use in 'leiden' clustering. If None, all components are used.

        resolution (float):  
            Controls the granularity of clustering. Higher values lead to more clusters. Applies to 'leiden' and 'phenograph'.

        phenograph_clustering_metric (str):  
            The metric for defining nearest neighbors in 'phenograph' clustering. Choices include 'euclidean', 'manhattan', 'cosine', etc.

        nearest_neighbors (int):  
            Number of nearest neighbors to consider in the graph construction step, for 'leiden' and 'phenograph'.

        random_state (int):  
            Seed for random number generation, ensuring reproducible results.

        label (str, optional):  
            Custom label for storing results in `adata.obs`. Defaults to method name (e.g., 'spatial_kmeans').

        verbose (bool):  
            If set to `True`, the function will print detailed messages about its progress and the steps being executed.

        output_dir (str, optional):  
            Directory path for saving output files. If None, results are not saved to disk.

Returns:
        adata (anndata.AnnData):  
            The input `adata` object updated with clustering results in `adata.obs[label]`.

Example:
    ```python
    # Apply K-Means clustering
    adata = sm.tl.spatial_cluster(adata, df_name='spatial_count', method='kmeans', k=10, label='cluster_kmeans')

    # Apply Leiden clustering with specific resolution and principal components
    adata = sm.tl.spatial_cluster(adata, df_name='spatial_expression', method='leiden', resolution=0.5, n_pcs=20, label='cluster_leiden')

    # Apply Phenograph clustering with a specific metric and nearest neighbors
    adata = sm.tl.spatial_cluster(adata, df_name='spatial_lda', method='phenograph', phenograph_clustering_metric='manhattan', nearest_neighbors=15, label='cluster_phenograph')
    ```
    """


    # Load the andata object    
    if isinstance(adata, str):
        imid = str(adata.rsplit('/', 1)[-1])
        adata = ad.read(adata)
    else:
        adata = adata

    # Make a copy of adata to modify
    adata_copy = adata.copy()

    # Error check
    try:
        adata_copy.uns[df_name]
    except KeyError:
        print (str('Supplied df_name not found, please run `sm.tl.spatial_expression` or LDA, counts or other similar methods'))

    # Crete a new anndata object with the user defined spatial information
    adata_new = ad.AnnData(adata_copy.uns[df_name].fillna(0))
    adata_new.obs = adata_copy.obs

    # Create a meaningful label name
    if label is None:
        label = 'spatial_' + str(method)

    # Run the clustering algorithm
    adata_new = cluster (adata = adata_new,
                         method = method,
                         k=k, 
                         n_pcs=n_pcs, 
                         resolution=resolution,
                         phenograph_clustering_metric=phenograph_clustering_metric,
                         nearest_neighbors=nearest_neighbors, 
                         use_raw=False, 
                         random_state=random_state,
                         label=label)

    # Get the clusters and append that to original adata object
    result = adata_new.obs[label]
    result = result.reindex(adata.obs.index)
    adata.obs[label] = result


    # Save data if requested
    if output_dir is not None:
        output_dir = pathlib.Path(output_dir)
        output_dir.mkdir(exist_ok=True, parents=True)
        adata.write(output_dir / imid)
    else:    
        # Return data
        return adata