Skip to content

spatial_scatterPlot

Short Description

The scatterPlot function offers a convenient way to generate scatter plots for visualizing single-cell spatial data. By utilizing this function, users can effectively visualize the spatial distribution of cells while overlaying expression levels or categorical columns onto the plot. This functionality allows for a comprehensive understanding of the relationship between cell location and specific features of interest within the dataset.

Function

spatial_scatterPlot(adata, colorBy, topLayer=None, x_coordinate='X_centroid', y_coordinate='Y_centroid', imageid='imageid', layer=None, subset=None, s=None, ncols=None, alpha=1, dpi=200, fontsize=None, plotLegend=True, cmap='RdBu_r', catCmap='tab20', vmin=None, vmax=None, customColors=None, figsize=(5, 5), invert_yaxis=True, saveDir=None, fileName='scimapScatterPlot.png', **kwargs)

Parameters:

Name Type Description Default
adata AnnData

Pass the adata loaded into memory or a path to the adata file (.h5ad).

required
colorBy str
required
topLayer list
A list of categories that should be plotted on the top layer. These categories
must be present in the `colorBy` data. Helps to highlight cell types or cluster that is of interest.
None
x_coordinate str

The column name in spatial feature table that records the X coordinates for each cell.

'X_centroid'
y_coordinate str

The column name in single-cell spatial table that records the Y coordinates for each cell.

'Y_centroid'
imageid str

The column name in spatial feature table that contains the image ID for each cell.

'imageid'
layer str or None

The layer in adata.layers that contains the expression data to use. If None, adata.X is used. use raw to use the data stored in adata.raw.X.

None
subset list or None

imageid of a single or multiple images to be subsetted for plotting purposes.

None
s float

The size of the markers.

None
ncols int

The number of columns in the final plot when multiple variables are plotted.

None
alpha float

The alpha value of the points (controls opacity).

1
dpi int

The DPI of the figure.

200
fontsize int

The size of the fonts in plot.

None
plotLegend bool

Whether to include a legend.

True
cmap str

The colormap to use for continuous data.

'RdBu_r'
catCmap str

The colormap to use for categorical data.

'tab20'
vmin float or None

The minimum value of the color scale.

None
vmax float or None

The maximum value of the color scale.

None
customColors dict or None

A dictionary mapping color categories to colors.

None
figsize tuple

The size of the figure. Default is (5, 5).

(5, 5)
invert_yaxis bool

Invert the Y-axis of the plot.

True
saveDir str or None

The directory to save the output plot. If None, the plot will not be saved.

None
fileName str

The name of the output file. Use desired file format as suffix (e.g. .png or .pdf). Default is 'scimapScatterPlot.png'.

'scimapScatterPlot.png'
**kwargs

Additional keyword arguments to be passed to the matplotlib scatter function.

{}

Returns:

Name Type Description
Plot image

If saveDir is provided the plot will saved within the provided saveDir.

Example
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
customColors = { 'Unknown' : '#e5e5e5',
                'CD8+ T' : '#ffd166',
                'Non T CD4+ cells' : '#06d6a0',
                'CD4+ T' : '#118ab2',
                'ECAD+' : '#ef476f',
                'Immune' : '#073b4c',
                'KI67+ ECAD+' : '#000000'
    }

sm.pl.spatial_scatterPlot (adata=core6,
                 colorBy = ['ECAD', 'phenotype_gator'],
                 subset = 'unmicst-6_cellMask',
                 figsize=(4,4),
                 s=0.5,
                 plotLegend=True,
                 fontsize=3,
                 dpi=300,
                 vmin=0,
                 vmax=1,
                 customColors=customColors,
                 fileName='scimapScatterPlot.svg',
                 saveDir='/Users/aj/Downloads')
Source code in scimap/plotting/spatial_scatterPlot.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
def spatial_scatterPlot(
    adata,
    colorBy,
    topLayer=None,
    x_coordinate='X_centroid',
    y_coordinate='Y_centroid',
    imageid='imageid',
    layer=None,
    subset=None,
    s=None,
    ncols=None,
    alpha=1,
    dpi=200,
    fontsize=None,
    plotLegend=True,
    cmap='RdBu_r',
    catCmap='tab20',
    vmin=None,
    vmax=None,
    customColors=None,
    figsize=(5, 5),
    invert_yaxis=True,
    saveDir=None,
    fileName='scimapScatterPlot.png',
    **kwargs,
):
    """
    Parameters:
        adata (anndata.AnnData):
            Pass the `adata` loaded into memory or a path to the `adata`
            file (.h5ad).

        colorBy (str):
        The column name that will be used for color-coding the points. This can be
        either markers (data stored in `adata.var`) or observations (data stored in `adata.obs`).

        topLayer (list, optional):
                A list of categories that should be plotted on the top layer. These categories
                must be present in the `colorBy` data. Helps to highlight cell types or cluster that is of interest.

        x_coordinate (str, optional):
            The column name in `spatial feature table` that records the
            X coordinates for each cell.

        y_coordinate (str, optional):
            The column name in `single-cell spatial table` that records the
            Y coordinates for each cell.

        imageid (str, optional):
            The column name in `spatial feature table` that contains the image ID
            for each cell.

        layer (str or None, optional):
            The layer in `adata.layers` that contains the expression data to use.
            If `None`, `adata.X` is used. use `raw` to use the data stored in `adata.raw.X`.

        subset (list or None, optional):
            `imageid` of a single or multiple images to be subsetted for plotting purposes.

        s (float, optional):
            The size of the markers.

        ncols (int, optional):
            The number of columns in the final plot when multiple variables are plotted.

        alpha (float, optional):
            The alpha value of the points (controls opacity).

        dpi (int, optional):
            The DPI of the figure.

        fontsize (int, optional):
            The size of the fonts in plot.

        plotLegend (bool, optional):
            Whether to include a legend.

        cmap (str, optional):
            The colormap to use for continuous data.

        catCmap (str, optional):
            The colormap to use for categorical data.

        vmin (float or None, optional):
            The minimum value of the color scale.

        vmax (float or None, optional):
            The maximum value of the color scale.

        customColors (dict or None, optional):
            A dictionary mapping color categories to colors.

        figsize (tuple, optional):
            The size of the figure. Default is (5, 5).

        invert_yaxis (bool, optional):
            Invert the Y-axis of the plot.

        saveDir (str or None, optional):
            The directory to save the output plot. If None, the plot will not be saved.

        fileName (str, optional):
            The name of the output file. Use desired file format as
            suffix (e.g. `.png` or `.pdf`). Default is 'scimapScatterPlot.png'.

        **kwargs:
            Additional keyword arguments to be passed to the matplotlib scatter function.


    Returns:
        Plot (image):
            If `saveDir` is provided the plot will saved within the
            provided saveDir.

    Example:
            ```python

            customColors = { 'Unknown' : '#e5e5e5',
                            'CD8+ T' : '#ffd166',
                            'Non T CD4+ cells' : '#06d6a0',
                            'CD4+ T' : '#118ab2',
                            'ECAD+' : '#ef476f',
                            'Immune' : '#073b4c',
                            'KI67+ ECAD+' : '#000000'
                }

            sm.pl.spatial_scatterPlot (adata=core6,
                             colorBy = ['ECAD', 'phenotype_gator'],
                             subset = 'unmicst-6_cellMask',
                             figsize=(4,4),
                             s=0.5,
                             plotLegend=True,
                             fontsize=3,
                             dpi=300,
                             vmin=0,
                             vmax=1,
                             customColors=customColors,
                             fileName='scimapScatterPlot.svg',
                             saveDir='/Users/aj/Downloads')


            ```

    """

    # Load the andata object
    if isinstance(adata, str):
        adata = ad.read(adata)
    else:
        adata = adata.copy()

    # subset data if neede
    if subset is not None:
        if isinstance(subset, str):
            subset = [subset]
        if layer == 'raw':
            bdata = adata.copy()
            bdata.X = adata.raw.X
            bdata = bdata[bdata.obs[imageid].isin(subset)]
        else:
            bdata = adata.copy()
            bdata = bdata[bdata.obs[imageid].isin(subset)]
    else:
        bdata = adata.copy()

    # isolate the data
    if layer is None:
        data = pd.DataFrame(bdata.X, index=bdata.obs.index, columns=bdata.var.index)
    elif layer == 'raw':
        data = pd.DataFrame(bdata.raw.X, index=bdata.obs.index, columns=bdata.var.index)
    else:
        data = pd.DataFrame(
            bdata.layers[layer], index=bdata.obs.index, columns=bdata.var.index
        )

    # isolate the meta data
    meta = bdata.obs

    # toplayer logic
    if isinstance(topLayer, str):
        topLayer = [topLayer]

    # identify the things to color
    if isinstance(colorBy, str):
        colorBy = [colorBy]
    # extract columns from data and meta
    data_cols = [col for col in data.columns if col in colorBy]
    meta_cols = [col for col in meta.columns if col in colorBy]
    # combine extracted columns from data and meta
    colorColumns = pd.concat([data[data_cols], meta[meta_cols]], axis=1)

    # identify the x and y coordinates
    x = meta[x_coordinate]
    y = meta[y_coordinate]

    # auto identify rows and columns in the grid plot
    def calculate_grid_dimensions(num_items, num_columns=None):
        """
        Calculates the number of rows and columns for a square grid
        based on the number of items.
        """
        if num_columns is None:
            num_rows_columns = int(math.ceil(math.sqrt(num_items)))
            return num_rows_columns, num_rows_columns
        else:
            num_rows = int(math.ceil(num_items / num_columns))
            return num_rows, num_columns

    # calculate the number of rows and columns
    nrows, ncols = calculate_grid_dimensions(
        len(colorColumns.columns), num_columns=ncols
    )

    # resolve figsize
    # figsize = (figsize[0]*ncols, figsize[1]*nrows)

    # Estimate point size
    if s is None:
        s = (10000 / bdata.shape[0]) / len(colorColumns.columns)

    # Define the categorical colormap (optional)
    cmap_cat = plt.get_cmap(catCmap)

    # FIIGURE
    fig, axs = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize, dpi=dpi)

    # Flatten the axs array for easier indexing
    if nrows == 1 and ncols == 1:
        axs = [axs]  # wrap single subplot in a list
    else:
        axs = axs.flatten()

    # Loop over the columns of the DataFrame
    for i, col in enumerate(colorColumns):
        # Select the current axis
        ax = axs[i]

        # invert y-axis
        if invert_yaxis is True:
            ax.invert_yaxis()

        # Scatter plot for continuous data
        if colorColumns[col].dtype.kind in 'iufc':
            scatter = ax.scatter(
                x=x,
                y=y,
                c=colorColumns[col],
                cmap=cmap,
                s=s,
                vmin=vmin,
                vmax=vmax,
                linewidths=0,
                alpha=alpha,
                **kwargs,
            )
            if plotLegend is True:
                cbar = plt.colorbar(scatter, ax=ax, pad=0)
                cbar.ax.tick_params(labelsize=fontsize)

        # Scatter plot for categorical data
        else:
            # Get the unique categories in the column
            categories = colorColumns[col].unique()

            # Map the categories to colors using either the custom colors or the categorical colormap
            if customColors:
                colors = {
                    cat: customColors[cat] for cat in categories if cat in customColors
                }
            else:
                colors = {cat: cmap_cat(i) for i, cat in enumerate(categories)}

            # Ensure topLayer categories are plotted last
            categories_to_plot_last = (
                [cat for cat in topLayer if cat in categories] if topLayer else []
            )
            categories_to_plot_first = [
                cat for cat in categories if cat not in categories_to_plot_last
            ]

            # Plot non-topLayer categories first
            for cat in categories_to_plot_first:
                cat_mask = colorColumns[col] == cat
                ax.scatter(
                    x=x[cat_mask],
                    y=y[cat_mask],
                    c=[colors.get(cat, cmap_cat(np.where(categories == cat)[0][0]))],
                    s=s,
                    linewidths=0,
                    alpha=alpha,
                    **kwargs,
                )

            # Then plot topLayer categories
            for cat in categories_to_plot_last:
                cat_mask = colorColumns[col] == cat
                ax.scatter(
                    x=x[cat_mask],
                    y=y[cat_mask],
                    c=[colors.get(cat, cmap_cat(np.where(categories == cat)[0][0]))],
                    s=s,
                    linewidths=0,
                    alpha=alpha,
                    **kwargs,
                )

            if plotLegend is True:
                # Adjust legend to include all categories
                handles = [
                    mpatches.Patch(
                        color=colors.get(
                            cat, cmap_cat(np.where(categories == cat)[0][0])
                        ),
                        label=cat,
                    )
                    for cat in categories
                ]
                ax.legend(
                    handles=handles,
                    bbox_to_anchor=(1.0, 1.0),
                    loc='upper left',
                    bbox_transform=ax.transAxes,
                    fontsize=fontsize,
                )

        ax.set_title(col)  # fontsize=fontsize
        ax.set_yticklabels([])
        ax.set_xticklabels([])
        ax.set_xticks([])
        ax.set_yticks([])

    # Remove any empty subplots
    num_plots = len(colorColumns.columns)
    for i in range(num_plots, nrows * ncols):
        ax = axs[i]
        fig.delaxes(ax)

    # Adjust the layout of the subplots grid
    plt.tick_params(axis='both', labelsize=fontsize)
    plt.tight_layout()

    # save figure
    if saveDir:
        if not os.path.exists(saveDir):
            os.makedirs(saveDir)
        full_path = os.path.join(saveDir, fileName)
        plt.savefig(full_path, dpi=dpi)
        plt.close()
        print(f"Saved plot to {full_path}")
    else:
        plt.show()