Skip to content

napariGater

Short Description

sm.pl.napariGater(): This function leverages Napari to display OME-TIFF images, overlaying points that assist in manually determining gating thresholds for specific markers. By visualizing marker expression spatially, users can more accurately define gates. Subsequently, the identified gating parameters can be applied to the dataset using sm.pp.rescale, enabling precise control over data segmentation and analysis based on marker expression levels.

Replacement for sm.pl.gate_finder()

napariGater(image_path, adata, layer='raw', log=True, x_coordinate='X_centroid', y_coordinate='Y_centroid', imageid='imageid', subset=None, flip_y=True, channel_names='default', point_size=10, calculate_contrast=True, verbose=False)

Parameters:

Name Type Description Default
image_path str

Path to the high-resolution multi-channel image (TIFF or OME-TIFF supported).

required
adata AnnData

Annotated data matrix containing single-cell expression and spatial metadata.

required
layer str

Specifies which layer in adata to use for expression data (e.g., 'raw' or a named layer). Defaults to 'raw'.

'raw'
log bool

If True, applies a log1p transformation to expression values before visualization. Defaults to True.

True
x_coordinate, y_coordinate (str

Keys in adata.obs specifying X and Y spatial coordinates of cells. Defaults are 'X_centroid' and 'Y_centroid'.

required
imageid str

Column name in adata.obs indicating the image source (used for filtering and metadata grouping). Defaults to 'imageid'.

'imageid'
subset str

Specific image ID or sample name to filter and visualize. If None, uses the first available entry in adata.obs[imageid].

None
flip_y bool

If True, inverts the Y-axis to match image coordinate system. Defaults to True.

True
channel_names list or str

List of marker/channel names corresponding to the order in the image. Defaults to 'default', which uses adata.uns['all_markers'].

'default'
point_size int

Size of the points representing gated cells. Defaults to 10.

10
calculate_contrast bool

If True, contrast settings are estimated automatically for each channel. If False, existing settings in adata.uns are reused or defaulted. Defaults to True.

True
verbose bool

If True, prints detailed information about data ranges and transformations.

False

Returns:

Name Type Description
None

Launches an interactive napari viewer for manual gate threshold adjustment. The gating values are stored in adata.uns['gates'], and user edits are tracked under adata.uns['napariGaterProvenance'].

Example
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
# Launch napariGater with default settings
sm.pl.napariGater('/path/to/image.ome.tif', adata=adata)

# Use expression layer, flip Y-axis off, and focus on a specific sample
sm.pl.napariGater('/path/to/image.tif', adata=adata, layer='expression',
                  flip_y=False, subset='Sample_A')

# Specify custom channels and disable contrast calculation
sm.pl.napariGater('/path/to/image.tif', adata=adata,
                  channel_names=['DAPI', 'CD45', 'CD3'], calculate_contrast=False)
Source code in scimap/plotting/napariGater.py
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
def napariGater(
    image_path,
    adata,
    layer='raw',
    log=True,
    x_coordinate='X_centroid',
    y_coordinate='Y_centroid',
    imageid='imageid',
    subset=None,
    flip_y=True,
    channel_names='default',
    point_size=10,
    calculate_contrast=True,
    verbose=False
):

    """    
    Parameters:
        image_path (str):
            Path to the high-resolution multi-channel image (TIFF or OME-TIFF supported).

        adata (anndata.AnnData):
            Annotated data matrix containing single-cell expression and spatial metadata.

        layer (str, optional):
            Specifies which layer in `adata` to use for expression data (e.g., 'raw' or a named layer). Defaults to 'raw'.

        log (bool, optional):
            If True, applies a log1p transformation to expression values before visualization. Defaults to True.

        x_coordinate, y_coordinate (str, optional):
            Keys in `adata.obs` specifying X and Y spatial coordinates of cells. Defaults are 'X_centroid' and 'Y_centroid'.

        imageid (str, optional):
            Column name in `adata.obs` indicating the image source (used for filtering and metadata grouping). Defaults to 'imageid'.

        subset (str, optional):
            Specific image ID or sample name to filter and visualize. If None, uses the first available entry in `adata.obs[imageid]`.

        flip_y (bool, optional):
            If True, inverts the Y-axis to match image coordinate system. Defaults to True.

        channel_names (list or str, optional):
            List of marker/channel names corresponding to the order in the image. 
            Defaults to 'default', which uses `adata.uns['all_markers']`.

        point_size (int, optional):
            Size of the points representing gated cells. Defaults to 10.

        calculate_contrast (bool, optional):
            If True, contrast settings are estimated automatically for each channel. If False, existing settings in `adata.uns` are reused or defaulted. Defaults to True.

        verbose (bool, optional):
            If True, prints detailed information about data ranges and transformations.

    Returns:
        None:
            Launches an interactive napari viewer for manual gate threshold adjustment.
            The gating values are stored in `adata.uns['gates']`, and user edits are tracked under `adata.uns['napariGaterProvenance']`.

    Example:
        ```python
        # Launch napariGater with default settings
        sm.pl.napariGater('/path/to/image.ome.tif', adata=adata)

        # Use expression layer, flip Y-axis off, and focus on a specific sample
        sm.pl.napariGater('/path/to/image.tif', adata=adata, layer='expression',
                          flip_y=False, subset='Sample_A')

        # Specify custom channels and disable contrast calculation
        sm.pl.napariGater('/path/to/image.tif', adata=adata,
                          channel_names=['DAPI', 'CD45', 'CD3'], calculate_contrast=False)
        ```
"""

    os.environ['QT_MAC_WANTS_LAYER'] = '1'

    warnings.warn(
        "NOTE: napariGater() is currently in beta testing. "
        "If you encounter any issues, please report them at: "
        "https://github.com/labsyspharm/scimap/issues",
        UserWarning,
        stacklevel=2,
    )

    print("Initializing...")
    start_time = time.time()

    # Initialize gates with the chosen layer and log settings.
    adata = initialize_gates(adata, imageid, layer, log, verbose)

    if channel_names == 'default':
        channel_names = adata.uns['all_markers']
    else:
        channel_names = channel_names 

    print("Loading image data...")
    img_data, tiff_file, multiscale = load_image_efficiently(image_path)
    if img_data is None:
        raise ValueError("Failed to load image data")

    current_image = adata.obs[imageid].iloc[0] if subset is None else subset

    if calculate_contrast:
        print("Calculating contrast settings...")
        adata = initialize_contrast_settings(
            adata,
            img_data,
            channel_names,
            imageid=imageid,
            subset=subset,
        )
    else:
        if 'image_contrast_settings' not in adata.uns:
            adata.uns['image_contrast_settings'] = {}
        current_image = adata.obs[imageid].iloc[0] if subset is None else subset
        should_initialize = False
        if current_image not in adata.uns['image_contrast_settings']:
            should_initialize = True
        else:
            existing_channels = set(adata.uns['image_contrast_settings'][current_image].keys())
            new_channels = set(channel_names)
            missing_channels = new_channels - existing_channels
            if missing_channels:
                print(f"Adding default contrast settings for new channels: {missing_channels}")
                should_initialize = True
        if should_initialize:
            contrast_settings = adata.uns['image_contrast_settings'].get(current_image, {})
            for channel in channel_names:
                if channel not in contrast_settings:
                    try:
                        if isinstance(img_data, list):
                            channel_idx = channel_names.index(channel)
                            channel_data = img_data[-1][channel_idx]
                            if hasattr(channel_data, 'compute'):
                                min_val = float(channel_data.min().compute())
                                max_val = float(channel_data.max().compute())
                            else:
                                min_val = float(channel_data.min())
                                max_val = float(channel_data.max())
                        else:
                            channel_idx = channel_names.index(channel)
                            min_val = float(img_data[channel_idx].min())
                            max_val = float(img_data[channel_idx].max())
                    except Exception as e:
                        print(f"Warning: Could not determine data range for {channel}, using defaults. Error: {str(e)}")
                        min_val, max_val = 0.0, 1.0
                    contrast_settings[channel] = {'low': min_val, 'high': max_val}
            adata.uns['image_contrast_settings'][current_image] = contrast_settings
            print(f"Initialized contrast settings for {current_image} with {len(channel_names)} channels")

    print(f"Initialization completed in {time.time() - start_time:.2f} seconds")
    print("Opening napari viewer...")

    viewer = napari.Viewer()

    default_colormaps = [
        'magenta', 'cyan', 'yellow', 'red', 'green', 'blue',
        'magenta', 'cyan', 'yellow', 'red', 'green', 'blue'
    ]

    add_channels_to_viewer(
        viewer,
        img_data,
        channel_names,
        adata.uns['image_contrast_settings'][current_image],
        colormaps=default_colormaps
    )

    loaded_channels = [lyr.name for lyr in viewer.layers if isinstance(lyr, napari.layers.Image)]
    if len(loaded_channels) != len(channel_names):
        print(f"\nWarning: Only loaded {len(loaded_channels)}/{len(channel_names)} channels")
        missing = set(channel_names) - set(loaded_channels)
        if missing:
            print(f"Missing channels: {', '.join(missing)}")

    points_layer = viewer.add_points(
        np.zeros((0, 2)),
        size=point_size,
        face_color='white',
        name='gated_points',
        visible=True,
    )

    # Use the chosen layer when creating the initial marker data.
    initial_marker = list(adata.var.index)[0]
    initial_data = get_marker_data(initial_marker, adata, layer, log, verbose)

    # Calculate initial min/max from the specified layer using .iloc[0] for explicit float conversion
    marker_data = get_marker_data(initial_marker, adata, layer, log, verbose=False)
    min_val = round(float(marker_data.min().iloc[0]), 2)
    max_val = round(float(marker_data.max().iloc[0]), 2)

    current_image = adata.obs[imageid].iloc[0] if subset is None else subset
    initial_gate = adata.uns['gates'].loc[initial_marker, current_image]
    if pd.isna(initial_gate) or initial_gate < min_val or initial_gate > max_val:
        initial_gate = min_val
    else:
        initial_gate = round(float(initial_gate), 2)

    @magicgui(
        auto_call=True,
        layout='vertical',
        marker={
            'choices': list(adata.var.index), 
            'value': initial_marker,
            'label': 'Select Marker:'
        },
        gate={
            'widget_type': 'FloatSpinBox',
            'min': min_val,
            'max': max_val,
            'value': initial_gate,
            'step': 0.01,
            'label': 'Gate Threshold:'
        },
        marker_status={
            'widget_type': 'Label',
            'value': '⚪ Not adjusted'
        },
        confirm_gate={
            'widget_type': 'PushButton', 
            'text': 'Confirm Gate'
        },
        finish={
            'widget_type': 'PushButton', 
            'text': 'Finish Gating'
        },
    )
    def gate_controls(
        marker: str,
        gate: float = initial_gate,
        marker_status: str = '⚪ Not adjusted',
        confirm_gate=False,
        finish=False,
    ):
        data = get_marker_data(marker, adata, layer, log, verbose)
        if subset is not None:
            mask = adata.obs[imageid] == subset
            data = data[mask]
        mask = data.values >= gate
        cells = data.index[mask.flatten()]
        coordinates = adata[cells]
        if flip_y:
            coordinates = pd.DataFrame(
                {'y': coordinates.obs[y_coordinate], 'x': coordinates.obs[x_coordinate]}
            )
        else:
            coordinates = pd.DataFrame(
                {'x': coordinates.obs[x_coordinate], 'y': coordinates.obs[y_coordinate]}
            )
        points_layer.data = coordinates.values

    @gate_controls.marker.changed.connect
    def _on_marker_change(marker: str):
        current_state = {
            'zoom': viewer.camera.zoom,
            'center': viewer.camera.center
        }
        marker_data = get_marker_data(marker, adata, layer, log, verbose=False)
        min_val = round(float(marker_data.min().iloc[0]), 2)
        max_val = round(float(marker_data.max().iloc[0]), 2)
        current_image = adata.obs[imageid].iloc[0] if subset is None else subset
        existing_gate = adata.uns['gates'].loc[marker, current_image]
        value = existing_gate if (not pd.isna(existing_gate) and min_val <= existing_gate <= max_val) else min_val
        gate_controls.gate.min = min_val
        gate_controls.gate.max = max_val
        gate_controls.gate.value = round(float(value), 2)
        for lyr in viewer.layers:
            if isinstance(lyr, napari.layers.Image):
                if lyr.name == marker:
                    lyr.visible = True
                    viewer.layers.selection.active = lyr
                    viewer.layers.selection.clear()
                    viewer.layers.selection.add(lyr)
                else:
                    lyr.visible = False
        viewer.camera.zoom = current_state['zoom']
        viewer.camera.center = current_state['center']
        current_image = adata.obs[imageid].iloc[0] if subset is None else subset
        is_adjusted = marker in adata.uns['napariGaterProvenance']['manually_adjusted'].get(current_image, {})
        if is_adjusted:
            status_text = "✓ ADJUSTED"
            timestamp = adata.uns['napariGaterProvenance']['timestamp'][current_image][marker]
            from datetime import datetime
            try:
                dt = datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
                short_timestamp = dt.strftime("%y-%m-%d %H:%M")
                status_text += f" ({short_timestamp})"
            except:
                status_text += f" ({timestamp})"
        else:
            status_text = "⚪ NOT ADJUSTED"
        gate_controls.marker_status.value = status_text

    @gate_controls.confirm_gate.clicked.connect
    def _on_confirm():
        marker = gate_controls.marker.value
        gate = gate_controls.gate.value
        current_image = adata.obs[imageid].iloc[0] if subset is None else subset
        adata.uns['gates'].loc[marker, current_image] = float(gate)
        from datetime import datetime
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        if current_image not in adata.uns['napariGaterProvenance']['manually_adjusted']:
            adata.uns['napariGaterProvenance']['manually_adjusted'][current_image] = {}
        if current_image not in adata.uns['napariGaterProvenance']['timestamp']:
            adata.uns['napariGaterProvenance']['timestamp'][current_image] = {}
        if current_image not in adata.uns['napariGaterProvenance']['original_values']:
            adata.uns['napariGaterProvenance']['original_values'][current_image] = {}
        adata.uns['napariGaterProvenance']['manually_adjusted'][current_image][marker] = float(gate)
        adata.uns['napariGaterProvenance']['timestamp'][current_image][marker] = timestamp
        if marker not in adata.uns['napariGaterProvenance']['original_values'][current_image]:
            original_value = float(adata.uns['gates'].loc[marker, current_image])
            adata.uns['napariGaterProvenance']['original_values'][current_image][marker] = original_value
        short_timestamp = (datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
                           .strftime("%y-%m-%d %H:%M"))
        gate_controls.marker_status.value = f"✓ ADJUSTED ({short_timestamp})"
        print(f"Gate confirmed for {marker} at {gate:.2f}")

    @gate_controls.finish.clicked.connect
    def _on_finish():
        viewer.close()

    points_layer.data = np.zeros((0, 2))
    viewer.window.add_dock_widget(gate_controls)
    napari.run()

    print(f"Napari viewer initialized in {time.time() - start_time:.2f} seconds")