304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714 | def napariGater(
image_path,
adata,
layer='raw',
log=True,
x_coordinate='X_centroid',
y_coordinate='Y_centroid',
imageid='imageid',
subset=None,
flip_y=True,
channel_names='default',
point_size=10,
calculate_contrast=True,
):
"""
Parameters:
image_path (str):
Path to the high-resolution image file (supports formats like TIFF, OME.TIFF, ZARR).
adata (anndata.AnnData):
The annotated data matrix.
layer (str, optional):
Specifies the layer in `adata` containing expression data. Defaults to 'raw'.
log (bool, optional):
Applies log transformation to expression data if True. Defaults to True.
x_coordinate, y_coordinate (str, optional):
Columns in `adata.obs` specifying cell coordinates. Defaults are 'X_centroid' and 'Y_centroid'.
imageid (str, optional):
Column in `adata.obs` identifying images for datasets with multiple images. Defaults to 'imageid'.
subset (str, optional):
Specific image identifier for targeted analysis. Defaults to None.
flip_y (bool, optional):
Inverts the Y-axis to match image coordinates if True. Defaults to True.
channel_names (list or str, optional):
Names of the channels in the image. Defaults to 'default', using `adata.uns['all_markers']`.
point_size (int, optional):
Size of points in the visualization. Defaults to 10.
calculate_contrast (bool, optional):
Whether to calculate contrast limits automatically. If False, uses full data range.
Defaults to True.
Returns:
None:
Updates `adata.uns['gates']` with the gating thresholds.
Example:
```python
# Basic usage with default mcmicro parameters
sm.pl.napariGater(
image_path='path/to/image.ome.tif',
adata=adata
)
# Custom settings with specific channels and coordinate columns
sm.pl.napariGater(
image_path='path/to/image.ome.tif',
adata=adata,
x_coordinate='X_position',
y_coordinate='Y_position',
channel_names=['DAPI', 'CD45', 'CD3', 'CD8'], # note this much include all channels in the image but also match the names in `adata.var.index`
point_size=15
)
# Working with specific image from a multi-image dataset
sm.pl.napariGater(
image_path='path/to/image.ome.tif',
adata=adata,
subset='sample1',
imageid='imageid'
)
```
"""
import napari
from magicgui import magicgui
import time
import warnings
import os
# Suppress macOS-specific warnings
os.environ['QT_MAC_WANTS_LAYER'] = '1'
# Show warning when function is called
warnings.warn(
"NOTE: napariGater() is currently in beta testing. "
"If you encounter any issues, please report them at: "
"https://github.com/labsyspharm/scimap/issues",
UserWarning,
stacklevel=2,
)
print("Initializing...")
start_time = time.time()
# Initialize gates with GMM if needed
adata = initialize_gates(adata, imageid)
# Handle channel names#
if channel_names == 'default':
channel_names = adata.uns['all_markers']
else:
channel_names = channel_names
# Load image efficiently
print("Loading image data...")
img_data, tiff_file, multiscale = load_image_efficiently(image_path)
if img_data is None:
raise ValueError("Failed to load image data")
# Initialize contrast settings if needed
current_image = adata.obs[imageid].iloc[0] if subset is None else subset
if calculate_contrast:
print("Calculating contrast settings...")
adata = initialize_contrast_settings(
adata,
img_data,
channel_names,
imageid=imageid,
subset=subset,
)
else:
# Initialize contrast settings structure if it doesn't exist
if 'image_contrast_settings' not in adata.uns:
adata.uns['image_contrast_settings'] = {}
current_image = adata.obs[imageid].iloc[0] if subset is None else subset
# Check if we need to initialize or update settings for this image
should_initialize = False
if current_image not in adata.uns['image_contrast_settings']:
should_initialize = True
else:
# Check if we have settings for all current channels
existing_channels = set(adata.uns['image_contrast_settings'][current_image].keys())
new_channels = set(channel_names)
missing_channels = new_channels - existing_channels
if missing_channels:
print(f"Adding default contrast settings for new channels: {missing_channels}")
should_initialize = True
if should_initialize:
# Keep existing settings if any
contrast_settings = adata.uns['image_contrast_settings'].get(current_image, {})
# Add default settings for new channels
for channel in channel_names:
if channel not in contrast_settings:
# Try to get data range from the image if possible
try:
if isinstance(img_data, list): # Pyramidal
channel_idx = channel_names.index(channel)
channel_data = img_data[-1][channel_idx]
if hasattr(channel_data, 'compute'):
min_val = float(channel_data.min().compute())
max_val = float(channel_data.max().compute())
else:
min_val = float(channel_data.min())
max_val = float(channel_data.max())
else: # Non-pyramidal
channel_idx = channel_names.index(channel)
min_val = float(img_data[channel_idx].min())
max_val = float(img_data[channel_idx].max())
except Exception as e:
print(f"Warning: Could not determine data range for {channel}, using defaults. Error: {str(e)}")
min_val, max_val = 0.0, 1.0
contrast_settings[channel] = {'low': min_val, 'high': max_val}
# Save settings for this image
adata.uns['image_contrast_settings'][current_image] = contrast_settings
print(f"Initialized contrast settings for {current_image} with {len(channel_names)} channels")
print(f"Initialization completed in {time.time() - start_time:.2f} seconds")
print("Opening napari viewer...")
# Create the viewer and add all channels efficiently
viewer = napari.Viewer()
default_colormaps = [
'magenta', 'cyan', 'yellow', 'red', 'green', 'blue',
'magenta', 'cyan', 'yellow', 'red', 'green', 'blue'
] # Basic colors that will be cycled
add_channels_to_viewer(
viewer,
img_data,
channel_names,
adata.uns['image_contrast_settings'][current_image],
colormaps=default_colormaps
)
# Verify loaded channels
loaded_channels = [layer.name for layer in viewer.layers if isinstance(layer, napari.layers.Image)]
if len(loaded_channels) != len(channel_names):
print(f"\nWarning: Only loaded {len(loaded_channels)}/{len(channel_names)} channels")
missing = set(channel_names) - set(loaded_channels)
if missing:
print(f"Missing channels: {', '.join(missing)}")
# Create points layer
points_layer = viewer.add_points(
np.zeros((0, 2)),
size=point_size,
face_color='white',
name='gated_points',
visible=True,
)
# Create initial marker data before creating GUI
initial_marker = list(adata.var.index)[0]
initial_data = get_marker_data(initial_marker, adata, 'raw', log, verbose=False)
# Calculate initial min/max from expression values
marker_data = pd.DataFrame(adata.raw.X, columns=adata.var.index)[initial_marker]
if log:
marker_data = np.log1p(marker_data)
min_val = float(marker_data.min())
max_val = float(marker_data.max())
# Get initial gate value
current_image = adata.obs[imageid].iloc[0] if subset is None else subset
initial_gate = adata.uns['gates'].loc[initial_marker, current_image]
if pd.isna(initial_gate) or initial_gate < min_val or initial_gate > max_val:
initial_gate = min_val
@magicgui(
auto_call=True,
layout='vertical',
marker={
'choices': list(adata.var.index),
'value': initial_marker,
'label': 'Select Marker:'
},
gate={
'widget_type': 'FloatSpinBox',
'min': min_val,
'max': max_val,
'value': initial_gate,
'step': 0.01,
'label': 'Gate Threshold:'
},
marker_status={
'widget_type': 'Label',
'value': '⚪ Not adjusted' # Initial value
},
confirm_gate={
'widget_type': 'PushButton',
'text': 'Confirm Gate'
},
finish={
'widget_type': 'PushButton',
'text': 'Finish Gating'
},
)
def gate_controls(
marker: str,
gate: float = initial_gate,
marker_status: str = '⚪ Not adjusted',
confirm_gate=False,
finish=False,
):
# Get data using helper function
data = get_marker_data(marker, adata, layer, log)
# Filter data for subset if specified
if subset is not None:
mask = adata.obs[imageid] == subset
data = data[mask]
# Apply gate
mask = data.values >= gate
cells = data.index[mask.flatten()]
# Update points
coordinates = adata[cells]
if flip_y:
coordinates = pd.DataFrame(
{'y': coordinates.obs[y_coordinate], 'x': coordinates.obs[x_coordinate]}
)
else:
coordinates = pd.DataFrame(
{'x': coordinates.obs[x_coordinate], 'y': coordinates.obs[y_coordinate]}
)
points_layer.data = coordinates.values
# Add a separate handler for marker changes
@gate_controls.marker.changed.connect
def _on_marker_change(marker: str):
# Store current view state
current_state = {
'zoom': viewer.camera.zoom,
'center': viewer.camera.center
}
# Calculate min/max from expression values
marker_data = pd.DataFrame(adata.raw.X, columns=adata.var.index)[marker]
if log:
marker_data = np.log1p(marker_data)
min_val = float(marker_data.min())
max_val = float(marker_data.max())
# Get existing gate value
current_image = adata.obs[imageid].iloc[0] if subset is None else subset
existing_gate = adata.uns['gates'].loc[marker, current_image]
if pd.isna(existing_gate) or existing_gate < min_val or existing_gate > max_val:
value = min_val
else:
value = existing_gate
# Update the spinbox properties
gate_controls.gate.min = min_val
gate_controls.gate.max = max_val
gate_controls.gate.value = value
# Update layer visibility and selection
for layer in viewer.layers:
if isinstance(layer, napari.layers.Image):
if layer.name == marker:
layer.visible = True
viewer.layers.selection.active = layer # Select the layer
viewer.layers.selection.clear()
viewer.layers.selection.add(layer)
else:
layer.visible = False
# Restore view state
viewer.camera.zoom = current_state['zoom']
viewer.camera.center = current_state['center']
# Update status with more visible formatting and shorter timestamp
current_image = adata.obs[imageid].iloc[0] if subset is None else subset
is_adjusted = marker in adata.uns['napariGaterProvenance']['manually_adjusted'].get(current_image, {})
if is_adjusted:
status_text = "✓ ADJUSTED"
# Get and format timestamp
timestamp = adata.uns['napariGaterProvenance']['timestamp'][current_image][marker]
# Convert stored timestamp to shorter format
from datetime import datetime
try:
dt = datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
short_timestamp = dt.strftime("%y-%m-%d %H:%M")
status_text += f" ({short_timestamp})"
except:
status_text += f" ({timestamp})"
else:
status_text = "⚪ NOT ADJUSTED"
gate_controls.marker_status.value = status_text
@gate_controls.confirm_gate.clicked.connect
def _on_confirm():
marker = gate_controls.marker.value
gate = gate_controls.gate.value
current_image = adata.obs[imageid].iloc[0] if subset is None else subset
# Update gate value
adata.uns['gates'].loc[marker, current_image] = float(gate)
# Update provenance tracking
from datetime import datetime
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Ensure all necessary dictionaries exist
if current_image not in adata.uns['napariGaterProvenance']['manually_adjusted']:
adata.uns['napariGaterProvenance']['manually_adjusted'][current_image] = {}
if current_image not in adata.uns['napariGaterProvenance']['timestamp']:
adata.uns['napariGaterProvenance']['timestamp'][current_image] = {}
if current_image not in adata.uns['napariGaterProvenance']['original_values']:
adata.uns['napariGaterProvenance']['original_values'][current_image] = {}
# Store the adjustment
adata.uns['napariGaterProvenance']['manually_adjusted'][current_image][marker] = float(gate)
adata.uns['napariGaterProvenance']['timestamp'][current_image][marker] = timestamp
# Store original value if not already stored
if marker not in adata.uns['napariGaterProvenance']['original_values'][current_image]:
original_value = float(adata.uns['gates'].loc[marker, current_image])
adata.uns['napariGaterProvenance']['original_values'][current_image][marker] = original_value
# Update status with confirmation message
short_timestamp = datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S").strftime("%y-%m-%d %H:%M")
gate_controls.marker_status.value = f"✓ ADJUSTED ({short_timestamp})"
print(f"Gate confirmed for {marker} at {gate:.2f}")
# Add handler for finish button
@gate_controls.finish.clicked.connect
def _on_finish():
viewer.close()
# Initialize with empty points
points_layer.data = np.zeros((0, 2))
# Add the GUI to the viewer
viewer.window.add_dock_widget(gate_controls)
# Start the viewer
napari.run()
print(f"Napari viewer initialized in {time.time() - start_time:.2f} seconds")
|