Skip to content

napariGater

Short Description

sm.pl.gate_finder: This function leverages Napari to display OME-TIFF images, overlaying points that assist in manually determining gating thresholds for specific markers. By visualizing marker expression spatially, users can more accurately define gates. Subsequently, the identified gating parameters can be applied to the dataset using sm.pp.rescale, enabling precise control over data segmentation and analysis based on marker expression levels.

Function

napariGater(image_path, adata, layer='raw', log=True, x_coordinate='X_centroid', y_coordinate='Y_centroid', imageid='imageid', subset=None, flip_y=True, channel_names='default', point_size=10, calculate_contrast=True)

Parameters:

Name Type Description Default
image_path str

Path to the high-resolution image file (supports formats like TIFF, OME.TIFF, ZARR).

required
adata AnnData

The annotated data matrix.

required
layer str

Specifies the layer in adata containing expression data. Defaults to 'raw'.

'raw'
log bool

Applies log transformation to expression data if True. Defaults to True.

True
x_coordinate, y_coordinate (str

Columns in adata.obs specifying cell coordinates. Defaults are 'X_centroid' and 'Y_centroid'.

required
imageid str

Column in adata.obs identifying images for datasets with multiple images. Defaults to 'imageid'.

'imageid'
subset str

Specific image identifier for targeted analysis. Defaults to None.

None
flip_y bool

Inverts the Y-axis to match image coordinates if True. Defaults to True.

True
channel_names list or str

Names of the channels in the image. Defaults to 'default', using adata.uns['all_markers'].

'default'
point_size int

Size of points in the visualization. Defaults to 10.

10
calculate_contrast bool

Whether to calculate contrast limits automatically. If False, uses full data range. Defaults to True.

True

Returns:

Name Type Description
None

Updates adata.uns['gates'] with the gating thresholds.

Example
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Basic usage with default mcmicro parameters
sm.pl.napariGater(
    image_path='path/to/image.ome.tif',
    adata=adata
)

# Custom settings with specific channels and coordinate columns
sm.pl.napariGater(
    image_path='path/to/image.ome.tif',
    adata=adata,
    x_coordinate='X_position',
    y_coordinate='Y_position',
    channel_names=['DAPI', 'CD45', 'CD3', 'CD8'], # note this much include all channels in the image but also match the names in `adata.var.index`
    point_size=15
)

# Working with specific image from a multi-image dataset
sm.pl.napariGater(
    image_path='path/to/image.ome.tif',
    adata=adata,
    subset='sample1',
    imageid='imageid'
)
Source code in scimap/plotting/napariGater.py
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
def napariGater(
    image_path,
    adata,
    layer='raw',
    log=True,
    x_coordinate='X_centroid',
    y_coordinate='Y_centroid',
    imageid='imageid',
    subset=None,
    flip_y=True,
    channel_names='default',
    point_size=10,
    calculate_contrast=True,
):
    """
    Parameters:
        image_path (str):
            Path to the high-resolution image file (supports formats like TIFF, OME.TIFF, ZARR).

        adata (anndata.AnnData):
            The annotated data matrix.

        layer (str, optional):
            Specifies the layer in `adata` containing expression data. Defaults to 'raw'.

        log (bool, optional):
            Applies log transformation to expression data if True. Defaults to True.

        x_coordinate, y_coordinate (str, optional):
            Columns in `adata.obs` specifying cell coordinates. Defaults are 'X_centroid' and 'Y_centroid'.

        imageid (str, optional):
            Column in `adata.obs` identifying images for datasets with multiple images. Defaults to 'imageid'.

        subset (str, optional):
            Specific image identifier for targeted analysis. Defaults to None.

        flip_y (bool, optional):
            Inverts the Y-axis to match image coordinates if True. Defaults to True.

        channel_names (list or str, optional):
            Names of the channels in the image. Defaults to 'default', using `adata.uns['all_markers']`.

        point_size (int, optional):
            Size of points in the visualization. Defaults to 10.

        calculate_contrast (bool, optional):
            Whether to calculate contrast limits automatically. If False, uses full data range.
            Defaults to True.

    Returns:
        None:
            Updates `adata.uns['gates']` with the gating thresholds.

    Example:
        ```python
        # Basic usage with default mcmicro parameters
        sm.pl.napariGater(
            image_path='path/to/image.ome.tif',
            adata=adata
        )

        # Custom settings with specific channels and coordinate columns
        sm.pl.napariGater(
            image_path='path/to/image.ome.tif',
            adata=adata,
            x_coordinate='X_position',
            y_coordinate='Y_position',
            channel_names=['DAPI', 'CD45', 'CD3', 'CD8'], # note this much include all channels in the image but also match the names in `adata.var.index`
            point_size=15
        )

        # Working with specific image from a multi-image dataset
        sm.pl.napariGater(
            image_path='path/to/image.ome.tif',
            adata=adata,
            subset='sample1',
            imageid='imageid'
        )
        ```
    """
    import napari
    from magicgui import magicgui
    import time
    import warnings
    import os

    # Suppress macOS-specific warnings
    os.environ['QT_MAC_WANTS_LAYER'] = '1'

    # Show warning when function is called
    warnings.warn(
        "NOTE: napariGater() is currently in beta testing. "
        "If you encounter any issues, please report them at: "
        "https://github.com/labsyspharm/scimap/issues",
        UserWarning,
        stacklevel=2,
    )

    print("Initializing...")
    start_time = time.time()

    # Initialize gates with GMM if needed
    adata = initialize_gates(adata, imageid)

    # Handle channel names#
    if channel_names == 'default':
        channel_names = adata.uns['all_markers']
    else:
        channel_names = channel_names 


    # Load image efficiently
    print("Loading image data...")
    img_data, tiff_file = load_image_efficiently(image_path)
    if img_data is None:
        raise ValueError("Failed to load image data")


    # Initialize contrast settings if needed
    current_image = adata.obs[imageid].iloc[0] if subset is None else subset

    if calculate_contrast:
        print("Calculating contrast settings...")
        adata = initialize_contrast_settings(
            adata,
            img_data,
            channel_names,
            imageid=imageid,
            subset=subset,
        )
    else:
        # Initialize with full data range if contrast calculation is disabled
        if 'image_contrast_settings' not in adata.uns:
            adata.uns['image_contrast_settings'] = {}

        if current_image not in adata.uns['image_contrast_settings']:
            contrast_settings = {}
            for channel in channel_names:
                contrast_settings[channel] = {'low': 0.0, 'high': 1.0}
            adata.uns['image_contrast_settings'][current_image] = contrast_settings

    print(f"Initialization completed in {time.time() - start_time:.2f} seconds")
    print("Opening napari viewer...")

    # Create the viewer and add all channels efficiently
    viewer = napari.Viewer()

    add_channels_to_viewer(
        viewer,
        img_data,
        channel_names,
        adata.uns['image_contrast_settings'][current_image],
        colormaps=['magenta', 'cyan', 'yellow', 'red', 'green', 'blue']
    )

    # Verify loaded channels
    loaded_channels = [layer.name for layer in viewer.layers if isinstance(layer, napari.layers.Image)]
    if len(loaded_channels) != len(channel_names):
        print(f"\nWarning: Only loaded {len(loaded_channels)}/{len(channel_names)} channels")
        missing = set(channel_names) - set(loaded_channels)
        if missing:
            print(f"Missing channels: {', '.join(missing)}")

    # Create points layer
    points_layer = viewer.add_points(
        np.zeros((0, 2)),
        size=point_size,
        face_color='white',
        name='gated_points',
        visible=True,
    )

    # Create initial marker data before creating GUI
    initial_marker = list(adata.var.index)[0]
    initial_data = get_marker_data(initial_marker, adata, 'raw', log, verbose=False)

    # Calculate initial min/max from expression values
    marker_data = pd.DataFrame(adata.raw.X, columns=adata.var.index)[initial_marker]
    if log:
        marker_data = np.log1p(marker_data)
    min_val = float(marker_data.min())
    max_val = float(marker_data.max())

    # Get initial gate value
    current_image = adata.obs[imageid].iloc[0] if subset is None else subset
    initial_gate = adata.uns['gates'].loc[initial_marker, current_image]
    if pd.isna(initial_gate) or initial_gate < min_val or initial_gate > max_val:
        initial_gate = min_val

    @magicgui(
        auto_call=True,
        marker={'choices': list(adata.var.index), 'value': initial_marker},
        gate={
            'widget_type': 'FloatSpinBox',
            'min': min_val,
            'max': max_val,
            'value': initial_gate,
            'step': 0.01,
        },
        confirm_gate={'widget_type': 'PushButton', 'text': 'Confirm Gate'},
        finish={'widget_type': 'PushButton', 'text': 'Finish Gating'},
    )
    def gate_controls(
        marker: str,
        gate: float = initial_gate,
        confirm_gate=False,
        finish=False,
    ):
        # Get data using helper function
        data = get_marker_data(marker, adata, layer, log)

        # Apply gate
        mask = data.values >= gate
        cells = data.index[mask.flatten()]

        # Update points
        coordinates = adata[cells]
        if flip_y:
            coordinates = pd.DataFrame(
                {'y': coordinates.obs[y_coordinate], 'x': coordinates.obs[x_coordinate]}
            )
        else:
            coordinates = pd.DataFrame(
                {'x': coordinates.obs[x_coordinate], 'y': coordinates.obs[y_coordinate]}
            )
        points_layer.data = coordinates.values

    # Add a separate handler for marker changes
    @gate_controls.marker.changed.connect
    def _on_marker_change(marker: str):
        # Store current view state
        current_state = {
            'zoom': viewer.camera.zoom,
            'center': viewer.camera.center
        }

        # Calculate min/max from expression values
        marker_data = pd.DataFrame(adata.raw.X, columns=adata.var.index)[marker]
        if log:
            marker_data = np.log1p(marker_data)
        min_val = float(marker_data.min())
        max_val = float(marker_data.max())

        # Get existing gate value
        current_image = adata.obs[imageid].iloc[0] if subset is None else subset
        existing_gate = adata.uns['gates'].loc[marker, current_image]
        if pd.isna(existing_gate) or existing_gate < min_val or existing_gate > max_val:
            value = min_val
        else:
            value = existing_gate

        # Update the spinbox properties
        gate_controls.gate.min = min_val
        gate_controls.gate.max = max_val
        gate_controls.gate.value = value

        # Update layer visibility and selection
        for layer in viewer.layers:
            if isinstance(layer, napari.layers.Image):
                if layer.name == marker:
                    layer.visible = True
                    viewer.layers.selection.active = layer  # Select the layer
                    viewer.layers.selection.clear()
                    viewer.layers.selection.add(layer)
                else:
                    layer.visible = False

        # Restore view state
        viewer.camera.zoom = current_state['zoom']
        viewer.camera.center = current_state['center']

    @gate_controls.confirm_gate.clicked.connect
    def _on_confirm():
        marker = gate_controls.marker.value
        gate = gate_controls.gate.value
        current_image = adata.obs[imageid].iloc[0] if subset is None else subset
        adata.uns['gates'].loc[marker, current_image] = float(gate)

    # Add handler for finish button
    @gate_controls.finish.clicked.connect
    def _on_finish():
        viewer.close()

    # Initialize with empty points
    points_layer.data = np.zeros((0, 2))

    # Add the GUI to the viewer
    viewer.window.add_dock_widget(gate_controls)

    # Start the viewer
    napari.run()

    print(f"Napari viewer initialized in {time.time() - start_time:.2f} seconds")