Skip to content

gate_finder

Short Description

sm.pl.gate_finder: This function leverages Napari to display OME-TIFF images, overlaying points that assist in manually determining gating thresholds for specific markers. By visualizing marker expression spatially, users can more accurately define gates. Subsequently, the identified gating parameters can be applied to the dataset using sm.pp.rescale, enabling precise control over data segmentation and analysis based on marker expression levels.

Function

gate_finder(image_path, adata, marker_of_interest, layer='raw', log=True, from_gate=6, to_gate=8, increment=0.1, markers=None, channel_names='default', flip_y=True, x_coordinate='X_centroid', y_coordinate='Y_centroid', point_size=10, imageid='imageid', subset=None, seg_mask=None, **kwargs)

Parameters:

Name Type Description Default
image_path str

Path to the high-resolution image file (supports formats like TIFF, OME.TIFF).

required
adata AnnData

The annotated data matrix.

required
marker_of_interest str

The target marker for which the gating threshold is to be determined.

required
layer str

Specifies the layer in adata containing expression data. Defaults to 'raw' for adata.raw.X.

'raw'
log bool

Applies log transformation to expression data if set to True.

True
from_gate int

Starting gate threshold value for the marker of interest.

6
to_gate int

Ending gate threshold value for the marker of interest.

8
increment float

Incremental step size between from_gate and to_gate.

0.1
markers list

A list of additional markers to include in visualization for context.

None
channel_names list or str

Names of the channels in the image, in order. Defaults to 'default', using adata.uns['all_markers'].

'default'
flip_y bool

Inverts the Y-axis to match image coordinates if set to True. Defaults to True.

True
x_coordinate, y_coordinate (str

Columns in adata.obs specifying cell coordinates. Defaults are 'X_centroid' and 'Y_centroid'.

required
point_size int

Size of points in the visualization.

10
imageid str

Column in adata.obs identifying images for datasets with multiple images.

'imageid'
subset str

Specific image identifier for targeted analysis, typically an image ID.

None
seg_mask str

Path to a segmentation mask file to overlay.

None
**kwargs

Additional arguments passed to the visualization tool.

{}

Returns:

Name Type Description
Image napari

Displays the visualization using napari viewer.

Example
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
# Visualize gating thresholds for CD45 on a specific image
sm.pl.gate_finder(
    image_path='/path/to/image.ome.tif', adata=adata, marker_of_interest='CD45',
    from_gate=4, to_gate=10, increment=0.2, flip_y=False, point_size=12,
    subset='Sample1', seg_mask='/path/to/seg_mask.tif')

# Log-transformed gating for a marker with additional markers and custom channel names
sm.pl.gate_finder(
    image_path='/path/to/image.ome.tif', adata=adata, marker_of_interest='CD3',
    log=True, from_gate=3, to_gate=7, increment=0.1, markers=['CD19', 'CD4'],
    channel_names=['DAPI', 'CD3', 'CD19', 'CD4'], point_size=15)

# Explore gating for multiple markers across different segments
sm.pl.gate_finder(
    image_path='/path/to/image.ome.tif', adata=adata, marker_of_interest='CD8',
    layer='expression', from_gate=5, to_gate=9, increment=0.05, markers=['CD8', 'PD1'],
    subset='TumorRegion', seg_mask='/path/to/tumor_seg_mask.tif')
Source code in scimap/plotting/gate_finder.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
def gate_finder(
    image_path,
    adata,
    marker_of_interest,
    layer='raw',
    log=True,
    from_gate=6,
    to_gate=8,
    increment=0.1,
    markers=None,
    channel_names='default',
    flip_y=True,
    x_coordinate='X_centroid',
    y_coordinate='Y_centroid',
    point_size=10,
    imageid='imageid',
    subset=None,
    seg_mask=None,
    **kwargs,
):
    """
    Parameters:
            image_path (str):
                Path to the high-resolution image file (supports formats like TIFF, OME.TIFF).

            adata (anndata.AnnData):
                The annotated data matrix.

            marker_of_interest (str):
                The target marker for which the gating threshold is to be determined.

            layer (str, optional):
                Specifies the layer in `adata` containing expression data. Defaults to 'raw' for `adata.raw.X`.

            log (bool, optional):
                Applies log transformation to expression data if set to True.

            from_gate (int, optional):
                Starting gate threshold value for the marker of interest.

            to_gate (int, optional):
                Ending gate threshold value for the marker of interest.

            increment (float, optional):
                Incremental step size between `from_gate` and `to_gate`.

            markers (list, optional):
                A list of additional markers to include in visualization for context.

            channel_names (list or str, optional):
                Names of the channels in the image, in order. Defaults to 'default', using `adata.uns['all_markers']`.

            flip_y (bool, optional):
                Inverts the Y-axis to match image coordinates if set to True. Defaults to True.

            x_coordinate, y_coordinate (str, optional):
                Columns in `adata.obs` specifying cell coordinates. Defaults are 'X_centroid' and 'Y_centroid'.

            point_size (int, optional):
                Size of points in the visualization.

            imageid (str, optional):
                Column in `adata.obs` identifying images for datasets with multiple images.

            subset (str, optional):
                Specific image identifier for targeted analysis, typically an image ID.

            seg_mask (str, optional):
                Path to a segmentation mask file to overlay.

            **kwargs:
                Additional arguments passed to the visualization tool.

    Returns:
            Image (napari):
                Displays the visualization using napari viewer.

    Example:
        ```python

        # Visualize gating thresholds for CD45 on a specific image
        sm.pl.gate_finder(
            image_path='/path/to/image.ome.tif', adata=adata, marker_of_interest='CD45',
            from_gate=4, to_gate=10, increment=0.2, flip_y=False, point_size=12,
            subset='Sample1', seg_mask='/path/to/seg_mask.tif')

        # Log-transformed gating for a marker with additional markers and custom channel names
        sm.pl.gate_finder(
            image_path='/path/to/image.ome.tif', adata=adata, marker_of_interest='CD3',
            log=True, from_gate=3, to_gate=7, increment=0.1, markers=['CD19', 'CD4'],
            channel_names=['DAPI', 'CD3', 'CD19', 'CD4'], point_size=15)

        # Explore gating for multiple markers across different segments
        sm.pl.gate_finder(
            image_path='/path/to/image.ome.tif', adata=adata, marker_of_interest='CD8',
            layer='expression', from_gate=5, to_gate=9, increment=0.05, markers=['CD8', 'PD1'],
            subset='TumorRegion', seg_mask='/path/to/tumor_seg_mask.tif')

        ```
    """

    # If no raw data is available make a copy
    if adata.raw is None:
        adata.raw = adata

    # subset data if neede
    if subset is not None:
        if isinstance(subset, str):
            subset = [subset]
        if layer == 'raw':
            bdata = adata.copy()
            bdata.X = adata.raw.X
            bdata = bdata[bdata.obs[imageid].isin(subset)]
        else:
            bdata = adata.copy()
            bdata = bdata[bdata.obs[imageid].isin(subset)]
    else:
        bdata = adata.copy()

    # isolate the data
    if layer is None:
        data = pd.DataFrame(bdata.X, index=bdata.obs.index, columns=bdata.var.index)[
            [marker_of_interest]
        ]
    elif layer == 'raw':
        data = pd.DataFrame(
            bdata.raw.X, index=bdata.obs.index, columns=bdata.var.index
        )[[marker_of_interest]]
    else:
        data = pd.DataFrame(
            bdata.layers[layer], index=bdata.obs.index, columns=bdata.var.index
        )[[marker_of_interest]]

    if log is True:
        data = np.log1p(data)

    # Copy of the raw data if it exisits
    # if adata.raw is not None:
    #    adata.X = adata.raw.X

    # Plot only the Image that is requested
    # if subset is not None:
    #    adata = adata[adata.obs[imageid] == subset]

    # Make a copy of the data with the marker of interest
    # data = pd.DataFrame(np.log1p(adata.X), columns = adata.var.index, index= adata.obs.index)[[marker_of_interest]]

    # Generate a dataframe with various gates
    def gate(g, d):
        dd = d.values
        dd = np.where(dd < g, np.nan, dd)
        # np.warnings.filterwarnings('ignore')
        np.seterr('ignore')
        dd = np.where(dd > g, 1, dd)
        dd = pd.DataFrame(dd, index=d.index, columns=['gate-' + str(g)])
        return dd

    # Identify the list of increments
    inc = list(np.arange(from_gate, to_gate, increment))
    inc = [round(num, 3) for num in inc]

    # Apply the function
    r_gate = lambda x: gate(g=x, d=data)  # Create lamda function
    gated_data = list(map(r_gate, inc))  # Apply function
    # Concat all the results into a single dataframe
    gates = pd.concat(gated_data, axis=1)

    # Recover the channel names from adata
    if channel_names == 'default':
        channel_names = adata.uns['all_markers']
    else:
        channel_names = channel_names

    # if markers is a string convert to list
    if isinstance(markers, str):
        markers = [markers]

    # Index of the marker of interest and corresponding names
    if markers is not None:
        markers.extend([marker_of_interest])
        idx = np.where(np.isin(channel_names, markers))[0]
        channel_names = [channel_names[i] for i in idx]
    else:
        idx = list(range(len(channel_names)))
        channel_names = channel_names

    # Load the segmentation mask
    if seg_mask is not None:
        seg_m = tiff.imread(seg_mask)
        if (len(seg_m.shape) > 2) and (seg_m.shape[0] > 1):
            seg_m = seg_m[0]

    ##########################################################################
    # Visulaisation using Napari

    # load OME TIFF
    if os.path.isfile(image_path) is True:
        # Load the image
        image = tiff.TiffFile(image_path, is_ome=False)
        z = zarr.open(image.aszarr(), mode='r')  # convert image to Zarr array
        # Identify the number of pyramids and number of channels
        n_levels = len(image.series[0].levels)  # pyramid
        # If and if not pyramids are available
        if n_levels > 1:
            pyramid = [da.from_zarr(z[i]) for i in range(n_levels)]
            multiscale = True
        else:
            pyramid = da.from_zarr(z)
            multiscale = False
        # subset channels of interest
        if markers is not None:
            if n_levels > 1:
                for i in range(n_levels - 1):
                    pyramid[i] = pyramid[i][idx, :, :]
                n_channels = pyramid[0].shape[0]  # identify the number of channels
            else:
                pyramid = pyramid[idx, :, :]
                n_channels = pyramid.shape[0]  # identify the number of channels
        else:
            if n_levels > 1:
                n_channels = pyramid[0].shape[0]
            else:
                n_channels = pyramid.shape[
                    0
                ]  # check if channel names have been passed to all channels
        if channel_names is not None:
            assert n_channels == len(channel_names), (
                f'number of channel names ({len(channel_names)}) must '
                f'match number of channels ({n_channels})'
            )

        # Load the viewer
        viewer = napari.view_image(
            pyramid,
            channel_axis=0,
            multiscale=multiscale,
            name=None if channel_names is None else channel_names,
            visible=False,
            **kwargs,
        )

    # Operations on the ZARR image
    # check the format of image
    if os.path.isfile(image_path) is False:
        # print(image_path)
        viewer = napari.Viewer()
        viewer.open(
            image_path,
            multiscale=True,
            visible=False,
            name=None if channel_names is None else channel_names,
        )

    # Add the seg mask
    if seg_mask is not None:
        viewer.add_labels(seg_m, name='segmentation mask', visible=False)

    # subset the gates to include only the image of interest
    gates = gates.loc[bdata.obs.index,]

    # Add gating layer
    def add_phenotype_layer(adata, gates, phenotype_layer, x, y, viewer, point_size):
        cells = gates[gates[phenotype_layer] == 1].index
        coordinates = adata[cells]
        # Flip Y axis if needed
        if flip_y is True:
            coordinates = pd.DataFrame(
                {'y': coordinates.obs[y], 'x': coordinates.obs[x]}
            )
        else:
            coordinates = pd.DataFrame(
                {'x': coordinates.obs[x], 'y': coordinates.obs[y]}
            )
        # points = coordinates.values.tolist()
        points = coordinates.values
        # import time
        # start = time.time()
        viewer.add_points(
            points,
            size=point_size,
            face_color='white',
            visible=False,
            name=phenotype_layer,
        )
        # stop = time.time()
        # print(stop-start)

    # Run the function on all gating layer
    for i in gates.columns:
        add_phenotype_layer(
            adata=bdata,
            gates=gates,
            phenotype_layer=i,
            x=x_coordinate,
            y=y_coordinate,
            viewer=viewer,
            point_size=point_size,
        )