cluster_plots
Short Description
sm.pl.cluster_plots
: This versatile function streamlines the visualization
process by generating UMAP plots, heatmaps of the expression matrix, and
lists of ranked marker genes for each user-defined group, typically following
clustering analysis via sm.tl.cluster
. It offers a comprehensive overview of
clustering results, facilitating the exploration of spatial patterns,
molecular profiles, and key markers distinguishing each cluster.
Function
cluster_plots(adata, group_by, subsample=100000, palette='viridis', use_raw=False, size=None, output_dir=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata |
AnnData
|
The annotated data matrix. |
required |
group_by |
str
|
The column name in |
required |
subsample |
int
|
The number of cells to randomly subsample from the dataset for visualization to enhance performance. Default is 100000. If set to None, no subsampling is performed. |
100000
|
palette |
str
|
The name of a matplotlib colormap to use for coloring clusters. Default is 'viridis'. |
'viridis'
|
use_raw |
bool
|
If True, uses the |
False
|
size |
int
|
The size of the points in the UMAP plot. Default is 40. |
None
|
output_dir |
str
|
The directory where the plots should be saved. If not specified, plots are shown but not saved. |
None
|
Returns:
Name | Type | Description |
---|---|---|
plots |
matplotlib
|
The function does not return a value but generates and optionally saves the specified plots. |
Example
1 2 3 4 5 6 7 8 |
|
Source code in scimap/plotting/cluster_plots.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|