Skip to content

addROI_image

Short Description

sm.pl.addROI_image: This function enhances spatial data analysis by enabling the addition o f Regions of Interest (ROIs) directly onto images within an AnnData object, utilizing the napari viewer for intuitive graphical interaction. Users can delineate distinct areas such as 'Tumor', 'Stroma', or 'Tumor-Stromal-interface' on separate shape layers within the viewer, allowing for detailed spatial annotations.

Multiple, non-overlapping annotations within a single shape layer are aggregated into one ROI, facilitating categorization based on spatial characteristics. Shape layers can be conveniently renamed to reflect the desired ROI names, ensuring clarity and specificity in annotations.

It's crucial that each ROI is unique and non-overlapping to maintain data integrity.

Additionally, this tool serves as a valuable quality control (QC) step, allowing users to mark regions of varying quality for selective inclusion or exclusion in subsequent analyses.

Function

addROI_image(image_path, adata, subset=None, imageid='imageid', overlay=None, flip_y=True, overlay_category=None, markers=None, channel_names='default', x_coordinate='X_centroid', y_coordinate='Y_centroid', point_size=10, point_color=None, seg_mask=None, n_jobs=-1, verbose=False, overwrite=True, label='ROI', **kwargs)

Parameters:

Name Type Description Default
image_path str

Path to the image file. Supports TIFF, OME.TIFF, and ZARR formats.

required
adata AnnData

The annotated data matrix to which ROIs will be added.

required
subset list

Specifies the image(s) within adata to annotate. Necessary if adata contains multiple images.

None
imageid str

Column in adata.obs identifying images, for datasets with multiple images.

'imageid'
overlay str

Column in adata.obs with categorical data to overlay on the image, such as cell phenotypes.

None
flip_y bool

If True, inverts the Y-axis to match image coordinates. Default is True.

True
overlay_category list

Specific categories within overlay to visualize. If None, all categories are shown.

None
markers list

Specific markers to display. If None, all available markers are included.

None
channel_names list or str

Names of image channels, in order as they appear in the image. Defaults to markers in adata.uns['all_markers'] if 'default'.

'default'
x_coordinate, y_coordinate (str

Column names in adata.obs for cell coordinates. Defaults are 'X_centroid' and 'Y_centroid'.

required
point_size int

Size of points in the visualization.

10
point_color str

Color of points in the visualization. If None, colors are automatically assigned.

None
seg_mask str

Path to a segmentation mask file to be overlaid.

None
n_jobs int

Number of parallel jobs to use. Defaults to -1, using all available cores.

-1
verbose bool

If True, prints messages about the process.

False
overwrite bool

If True, overwrites existing ROI data in adata.obs.

True
label str

Key under which ROI data will be stored in adata.obs.

'ROI'
**kwargs

Additional keyword arguments passed to the napari viewer.

{}

Returns:

Name Type Description
adata AnnData

The AnnData object with updated ROI annotations.

Example
1
2
3
4
5
6
# Add ROIs to an image with specific overlays
sm.pl.addROI_image(image_path='/path/to/image.ome.tif', adata=adata, overlay='cell_type', label='Detailed_ROI')

# Add ROIs with segmentation masks and specific overlay categories
sm.pl.addROI_image(image_path='/path/to/image.ome.tif', adata=adata, seg_mask='/path/to/seg_mask.tif',
             overlay='phenotype', overlay_category=['Tumor', 'Stroma'], label='Cancer_Tissue_ROI')
Source code in scimap/plotting/addROI_image.py
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
def addROI_image(
    image_path,
    adata,
    subset=None,
    imageid='imageid',
    overlay=None,
    flip_y=True,
    overlay_category=None,
    markers=None,
    channel_names='default',
    x_coordinate='X_centroid',
    y_coordinate='Y_centroid',
    point_size=10,
    point_color=None,
    seg_mask=None,
    n_jobs=-1,
    verbose=False,
    overwrite=True,
    label='ROI',
    **kwargs,
):
    """
    Parameters:
            image_path (str):
                Path to the image file. Supports TIFF, OME.TIFF, and ZARR formats.

            adata (anndata.AnnData):
                The annotated data matrix to which ROIs will be added.

            subset (list, optional):
                Specifies the image(s) within `adata` to annotate. Necessary if `adata` contains multiple images.

            imageid (str, optional):
                Column in `adata.obs` identifying images, for datasets with multiple images.

            overlay (str, optional):
                Column in `adata.obs` with categorical data to overlay on the image, such as cell phenotypes.

            flip_y (bool, optional):
                If True, inverts the Y-axis to match image coordinates. Default is True.

            overlay_category (list, optional):
                Specific categories within `overlay` to visualize. If None, all categories are shown.

            markers (list, optional):
                Specific markers to display. If None, all available markers are included.

            channel_names (list or str, optional):
                Names of image channels, in order as they appear in the image. Defaults to markers in `adata.uns['all_markers']` if 'default'.

            x_coordinate, y_coordinate (str, optional):
                Column names in `adata.obs` for cell coordinates. Defaults are 'X_centroid' and 'Y_centroid'.

            point_size (int, optional):
                Size of points in the visualization.

            point_color (str, optional):
                Color of points in the visualization. If None, colors are automatically assigned.

            seg_mask (str, optional):
                Path to a segmentation mask file to be overlaid.

            n_jobs (int, optional):
                Number of parallel jobs to use. Defaults to -1, using all available cores.

            verbose (bool, optional):
                If True, prints messages about the process.

            overwrite (bool, optional):
                If True, overwrites existing ROI data in `adata.obs`.

            label (str, optional):
                Key under which ROI data will be stored in `adata.obs`.

            **kwargs:
                Additional keyword arguments passed to the napari viewer.

    Returns:
            adata (anndata.AnnData):
                The AnnData object with updated ROI annotations.

    Example:
        ```python

        # Add ROIs to an image with specific overlays
        sm.pl.addROI_image(image_path='/path/to/image.ome.tif', adata=adata, overlay='cell_type', label='Detailed_ROI')

        # Add ROIs with segmentation masks and specific overlay categories
        sm.pl.addROI_image(image_path='/path/to/image.ome.tif', adata=adata, seg_mask='/path/to/seg_mask.tif',
                     overlay='phenotype', overlay_category=['Tumor', 'Stroma'], label='Cancer_Tissue_ROI')


        ```
    """

    # TODO
    # - ADD Subset markers for ZARR ssection
    # - Ability to use ZARR metadata if available

    # create data matrix that has the co-ordinates
    data = pd.DataFrame(adata.obs)[[x_coordinate, y_coordinate, imageid]]

    # subset the data if needed
    if subset is not None:
        # convert string to list
        if isinstance(subset, str):
            subset = [subset]
        # subset data
        sub_data = data[data['imageid'].isin(subset)]
    else:
        sub_data = data

    # adding option to load just the image without an adata object
    if adata is None:
        channel_names = None
    else:
        # All operations on the AnnData object is performed first
        # Plot only the Image that is requested
        if subset is not None:
            adata_subset = adata[adata.obs[imageid].isin(subset)]
        else:
            adata_subset = adata.copy()

        # Recover the channel names from adata
        if channel_names == 'default':
            channel_names = adata_subset.uns['all_markers']
        else:
            channel_names = channel_names

        # Index of the marker of interest and corresponding names
        if markers is None:
            idx = list(range(len(channel_names)))
            channel_names = channel_names
        else:
            idx = []
            for i in markers:
                idx.append(list(channel_names).index(i))
            channel_names = markers

        # Load the segmentation mask
        if seg_mask is not None:
            seg_m = tiff.imread(seg_mask)
            if (len(seg_m.shape) > 2) and (seg_m.shape[0] > 1):
                seg_m = seg_m[0]

    # Operations on the OME TIFF image is performed next
    # check the format of image
    if os.path.isfile(image_path) is True:
        image = tiff.TiffFile(image_path, is_ome=False)  # is_ome=False
        z = zarr.open(image.aszarr(), mode='r')  # convert image to Zarr array
        # Identify the number of pyramids
        n_levels = len(image.series[0].levels)  # pyramid

        # If and if not pyramids are available
        if n_levels > 1:
            pyramid = [da.from_zarr(z[i]) for i in range(n_levels)]
            multiscale = True
        else:
            pyramid = da.from_zarr(z)
            multiscale = False

        # subset channels of interest
        if markers is not None:
            if n_levels > 1:
                for i in range(n_levels - 1):
                    pyramid[i] = pyramid[i][idx, :, :]
                n_channels = pyramid[0].shape[0]  # identify the number of channels
            else:
                pyramid = pyramid[idx, :, :]
                n_channels = pyramid.shape[0]  # identify the number of channels
        else:
            if n_levels > 1:
                n_channels = pyramid[0].shape[0]
            else:
                n_channels = pyramid.shape[0]

        # check if channel names have been passed to all channels
        if channel_names is not None:
            assert n_channels == len(channel_names), (
                f'number of channel names ({len(channel_names)}) must '
                f'match number of channels ({n_channels})'
            )

        # Load the viewer
        viewer = napari.view_image(
            pyramid,
            multiscale=multiscale,
            channel_axis=0,
            visible=False,
            name=None if channel_names is None else channel_names,
            **kwargs,
        )

    # Operations on the ZARR image
    # check the format of image
    if os.path.isfile(image_path) is False:
        # print(image_path)
        viewer = napari.Viewer()
        viewer.open(
            image_path,
            multiscale=True,
            visible=False,
            name=None if channel_names is None else channel_names,
        )

    # Add the seg mask
    if seg_mask is not None:
        viewer.add_labels(seg_m, name='segmentation mask', visible=False)

    # Add phenotype layer function
    def add_phenotype_layer(
        adata, overlay, phenotype_layer, x, y, viewer, point_size, point_color
    ):
        coordinates = adata[adata.obs[overlay] == phenotype_layer]
        # Flip Y AXIS if needed
        if flip_y is True:
            coordinates = pd.DataFrame(
                {'y': coordinates.obs[y], 'x': coordinates.obs[x]}
            )
        else:
            coordinates = pd.DataFrame(
                {'x': coordinates.obs[x], 'y': coordinates.obs[y]}
            )

        # points = coordinates.values.tolist()
        points = coordinates.values
        if point_color is None:
            r = lambda: random.randint(0, 255)  # random color generator
            point_color = '#%02X%02X%02X' % (r(), r(), r())  # random color generator
        viewer.add_points(
            points,
            size=point_size,
            face_color=point_color,
            visible=False,
            name=phenotype_layer,
        )

    if overlay is not None:
        # categories under investigation
        if overlay_category is None:
            available_phenotypes = list(adata_subset.obs[overlay].unique())
        else:
            available_phenotypes = overlay_category

        # Run the function on all phenotypes
        for i in available_phenotypes:
            add_phenotype_layer(
                adata=adata_subset,
                overlay=overlay,
                phenotype_layer=i,
                x=x_coordinate,
                y=y_coordinate,
                viewer=viewer,
                point_size=point_size,
                point_color=point_color,
            )

    # Intiate an ROI layer
    shape_layer = viewer.add_shapes(name=label)
    shape_layer.mode = 'add_polygon'
    # _ = show_info('Draw ROIs')

    # helper functions
    def ellipse_points_to_patch(vertex_1, vertex_2, co_vertex_1, co_vertex_2):
        """
        Parameters
        ----------
        vertex_1, vertex_2, co_vertex_1, co_vertex_2: array like, in the form of (x-coordinate, y-coordinate)
        """
        v_and_co_v = np.array([vertex_1, vertex_2, co_vertex_1, co_vertex_2])
        centers = v_and_co_v.mean(axis=0)

        d = sdistance.cdist(v_and_co_v, v_and_co_v, metric='euclidean')
        width = d[0, 1]
        height = d[2, 3]

        vector_2 = v_and_co_v[1] - v_and_co_v[0]
        vector_2 /= np.linalg.norm(vector_2)

        angle = np.degrees(np.arccos([1, 0] @ vector_2))

        ellipse_patch = mpatches.Ellipse(
            centers, width=width, height=height, angle=angle
        )
        return ellipse_patch

    # block the viewer until ROI is added
    a = """
        Opening Napari;
        Add shape layers (on left) to draw ROI's. 
        Rename the shape layer to give a name to your ROI
        Multiple shape layers are supported
        ROI's should not overlap
        Close Napari to save ROI's.
        """
    print(a)
    viewer.show(block=True)

    # Find all the shape layers
    my_shapes = [layer for layer in viewer.layers if isinstance(layer, Shapes)]
    # loop through the layers to find their names
    shape_names = []
    added_rois = []
    for i in my_shapes:
        shape_names.append(i.name)
        added_rois.append(len(viewer.layers[i.name].data))

    if any(y > 0 for y in added_rois):
        # Loop through all the Shape layers and extract the vertices and shape type
        all_rois = pd.DataFrame()
        for i in shape_names:
            # return shape vertices
            ver = viewer.layers[i].data
            # return shape shape
            structure = viewer.layers[i].shape_type
            # Each layer may contain multiple ROI's with different shapes (handle that)
            napari_roi_table = pd.DataFrame(
                dict(
                    vertices=[np.fliplr(v) for v in ver],
                    type=[str(s) for s in structure],
                    ROI=i,
                )
            )

            # convert gathered ROIs into mpatches
            for i in range(len(napari_roi_table.index)):
                # ellipse
                if napari_roi_table['type'][i] == 'ellipse':
                    napari_roi_table.loc[i:, 'mpatch'] = ellipse_points_to_patch(
                        napari_roi_table['vertices'][i][0],
                        napari_roi_table['vertices'][i][1],
                        napari_roi_table['vertices'][i][2],
                        napari_roi_table['vertices'][i][3],
                    )
                # polygon, rectangle, line
                elif napari_roi_table['type'][i] in ['rectangle', 'polygon', 'path']:
                    napari_roi_table.loc[i:, 'mpatch'] = mpatches.Polygon(
                        napari_roi_table['vertices'][i], closed=True
                    )
                else:
                    raise ValueError

            # merge the final ROI's across all shape layers
            all_rois = pd.concat([all_rois, napari_roi_table])
            all_rois['id'] = range(all_rois.shape[0])
            all_rois.index = all_rois['id']

        # Find cells within ROI and add it to the dataframe
        def add_roi_internal(roi_id):
            roi_mpatch = all_rois[all_rois['id'] == roi_id]['mpatch'][roi_id]
            inside = sub_data[
                roi_mpatch.contains_points(sub_data[[x_coordinate, y_coordinate]])
            ]
            inside_copy = inside.copy()
            inside_copy['ROI_internal'] = all_rois.loc[all_rois['id'] == roi_id, 'ROI'][
                roi_id
            ]
            # inside['ROI_internal'] = all_rois[all_rois['id'] == roi_id]['ROI'][roi_id]
            # return
            return inside_copy

        print("Identifying cells within selected ROI's")
        # all ROI cells
        roi_list = all_rois['id'].unique()
        # final_roi = list()
        # for i in roi_list:
        #    roi_mpatch = all_rois[all_rois['id'] == i]['mpatch'][i]
        #    inside = sub_data[roi_mpatch.contains_points(sub_data[[x_coordinate, y_coordinate]])]
        #    inside['ROI_internal'] = all_rois[all_rois['id'] == i]['ROI'][i]
        #    final_roi.append(inside)

        final_roi = Parallel(n_jobs=n_jobs, verbose=verbose)(
            delayed(add_roi_internal)(roi_id=i) for i in roi_list
        )

        # Merge all into a single DF
        final_roi = pd.concat(final_roi)[['ROI_internal']]

        # Add the list to obs
        result = pd.merge(
            data, final_roi, left_index=True, right_index=True, how='outer'
        )

        # Reindex
        result = result.reindex(adata.obs.index)

        # check if adata already has a column with the supplied label
        # if avaialble overwrite or append depending on users choice
        if label in adata.obs.columns:
            if overwrite is False:
                # Append
                # retreive the ROI information
                old_roi = adata.obs[label]
                combined_roi = pd.merge(
                    result, old_roi, left_index=True, right_index=True, how='outer'
                )
                combined_roi['ROI_internal'] = combined_roi['ROI_internal'].fillna(
                    combined_roi[label]
                )
            else:
                # Over write
                combined_roi = result.copy()
                combined_roi['ROI_internal'] = combined_roi['ROI_internal'].fillna(
                    'Other'
                )
        else:
            # if label is not present just create a new one
            combined_roi = result.copy()
            combined_roi['ROI_internal'] = combined_roi['ROI_internal'].fillna('Other')

        # Add to adata
        adata.obs[label] = combined_roi['ROI_internal']

        print("ROIs saved under adata.obs['" + str(label) + "']")

        # return
        return adata