Skip to content

sm.hl.addROI omero

Short Description

sm.hl.addROI_omero: The function allows users to add annotations that have been extracted from Omero using the following script: https://gist.github.com/Yu-AnChen/58754f960ccd540e307ed991bc6901b0.

Function

addROI_omero(adata, roi, x_coordinate='X_centroid', y_coordinate='Y_centroid', imageid='imageid', subset=None, overwrite=True, label='ROI', n_jobs=-1, verbose=False)

Parameters:

Name Type Description Default
adata

AnnData object

required
roi

DataFrame
Pandas dataframe of ROI's that have been extracted from Omero using the following script: https://gist.github.com/Yu-AnChen/58754f960ccd540e307ed991bc6901b0. Please note that the function currently does not handle overlapping ROI's and so make sure the ROI's are mutually exclusive.

required
x_coordinate

float, required
Column name containing the x-coordinates values.

'X_centroid'
y_coordinate

float, required
Column name containing the y-coordinates values.

'Y_centroid'
imageid

string, optional
In the event that the adata object contains multiple images, it is important that ROIs are added to each image seperately. Pass the name of the column that contains the imageid and use it in conjunction with the subset parameter to add ROI's to a specific image.

'imageid'
subset

list, optional
Name of the image to which the ROI is to be added. Note if you have multiple images in the adata object, you will need to add ROI's to each image one after the other independently.

None
overwrite

bool, optional
In the event you have multiple images in the adata object, ROI can be added to each image independently using the imageid and subset parameter. If you wish the results to be all saved with in the same column set this parameter to False. By default, the function will overwrite the label column.

True
label

string, optional
Key for the returned data, stored in adata.obs.

'ROI'
n_jobs

int, optional
Number of cores to use. Default is to use all available cores.

-1

Returns:

Type Description

adata Modified AnnData object. Check adata.obs for an additional column.

1
2
    roi = pd.read_csv('ROI/ROI_Z147_1_750.csv')
    adata = sm.hl.addROI_omero (adata, roi, label='aj_ROI')
Source code in scimap/helpers/_addROI_omero.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def addROI_omero (adata, roi, x_coordinate='X_centroid',y_coordinate='Y_centroid',
                   imageid='imageid', subset=None, overwrite=True,
                   label='ROI', n_jobs=-1, verbose=False):

    """
Parameters:

    adata : AnnData object

    roi : DataFrame  
        Pandas dataframe of ROI's that have been extracted from Omero using the following script: https://gist.github.com/Yu-AnChen/58754f960ccd540e307ed991bc6901b0.
        Please note that the function currently does not handle overlapping ROI's and so make sure the ROI's are mutually exclusive.

    x_coordinate : float, required  
        Column name containing the x-coordinates values.

    y_coordinate : float, required  
        Column name containing the y-coordinates values.

    imageid : string, optional  
        In the event that the adata object contains multiple images, it is
        important that ROIs are added to each image seperately. Pass the name 
        of the column that contains the `imageid` and use it in conjunction with
        the `subset` parameter to add ROI's to a specific image.

    subset : list, optional  
        Name of the image to which the ROI is to be added. Note if you have multiple images in the 
        adata object, you will need to add ROI's to each image one after the other independently. 

    overwrite : bool, optional  
        In the event you have multiple images in the adata object, ROI can be added to each image
        independently using the `imageid` and `subset` parameter. If you wish the results to be
        all saved with in the same column set this parameter to `False`. By default, the 
        function will overwrite the `label` column. 

    label : string, optional  
        Key for the returned data, stored in `adata.obs`.

    n_jobs : int, optional  
        Number of cores to use. Default is to use all available cores.

Returns:
    adata
        Modified AnnData object. Check `adata.obs` for an additional column.

Example:
```python
    roi = pd.read_csv('ROI/ROI_Z147_1_750.csv')
    adata = sm.hl.addROI_omero (adata, roi, label='aj_ROI')
```
    """

    # create data matrix that has the co-ordinates
    data = pd.DataFrame(adata.obs)[[x_coordinate, y_coordinate, imageid]]

    # subset the data if needed
    if subset is not None:
        # convert string to list
        if isinstance(subset, str): 
            subset = [subset]
        # subset data
        sub_data = data[data['imageid'].isin(subset)]
    else:
        sub_data = data


    def parse_roi_points(all_points):
        return np.array(
            re.findall(r'\d+\.?\d+', all_points), dtype=float
        ).reshape(-1, 2)

    def ellipse_points_to_patch(
        vertex_1, vertex_2,
        co_vertex_1, co_vertex_2
    ):
        """
        Parameters
        ----------
        vertex_1, vertex_2, co_vertex_1, co_vertex_2: array like, in the form of (x-coordinate, y-coordinate)

        """
        v_and_co_v = np.array([
            vertex_1, vertex_2,
            co_vertex_1, co_vertex_2
        ])
        centers = v_and_co_v.mean(axis=0)

        d = sdistance.cdist(v_and_co_v, v_and_co_v, metric='euclidean')
        width = d[0, 1]
        height = d[2, 3]

        vector_2 = v_and_co_v[1] - v_and_co_v[0]
        vector_2 /= np.linalg.norm(vector_2)

        angle = np.degrees(np.arccos([1, 0] @ vector_2))

        ellipse_patch = mpatches.Ellipse(
            centers, width=width, height=height, angle=angle        
        )
        return ellipse_patch

    def get_mpatch(roi):
        points = parse_roi_points(roi['all_points'])

        roi_type = roi['type']
        if roi_type in ['Point', 'Line']:
            roi_mpatch = mpatches.Polygon(points, closed=False)
        elif roi_type in ['Rectangle', 'Polygon', 'Polyline']:
            roi_mpatch = mpatches.Polygon(points, closed=True)
        elif roi_type == 'Ellipse':
            roi_mpatch = ellipse_points_to_patch(*points)
        else:
            raise ValueError
        return roi_mpatch

    def add_roi_internal (roi_id):
        roi_subset = roi[roi['Id'] == roi_id].iloc[0]

        roi_mpatch = get_mpatch(roi_subset)
        inside = sub_data[roi_mpatch.contains_points(sub_data[[x_coordinate, y_coordinate]])]
        inside['ROI_internal'] = roi_subset['Name']

        # return
        return inside

    # Apply function to all rows of the ROI dataframe
    roi_list = roi['Id'].unique()
    final_roi = Parallel(n_jobs=n_jobs, verbose=verbose)(delayed(add_roi_internal)(roi_id=i) for i in roi_list)   

    # Merge all into a single DF
    final_roi = pd.concat(final_roi)[['ROI_internal']]

    # Add the list to obs
    result = pd.merge(data, final_roi, left_index=True, right_index=True, how='outer')

    # Reindex
    result = result.reindex(adata.obs.index)

    # check if adata already has a column with the supplied label
    # if avaialble overwrite or append depending on users choice
    if label in adata.obs.columns:
        if overwrite is False:
            # Append
            # retreive the ROI information
            old_roi = adata.obs[label]
            combined_roi = pd.merge(result, old_roi, left_index=True, right_index=True, how='outer')
            combined_roi['ROI_internal'] = combined_roi['ROI_internal'].fillna(combined_roi[label])
        else:
            # Over write
            combined_roi = result.copy()
            combined_roi['ROI_internal'] = combined_roi['ROI_internal'].fillna('Other')     
    else:
        # if label is not present just create a new one
        combined_roi = result.copy()
        combined_roi['ROI_internal'] = combined_roi['ROI_internal'].fillna('Other') 


    # Add to adata
    adata.obs[label] = combined_roi['ROI_internal']

    # return
    return adata