30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213 | def image_viewer (image_path, adata, overlay=None, flip_y=True,
overlay_category=None,markers=None,channel_names='default',
x_coordinate='X_centroid',y_coordinate='Y_centroid',point_size=10,
point_color=None,subset=None,imageid='imageid',seg_mask=None,**kwargs):
"""
Parameters:
image_path : string
Location to the image file (TIFF, OME.TIFF, ZARR supported)
seg_mask: string
Location to the segmentation mask file.
adata : AnnData Object
flip_y : bool, optional
Flip the Y-axis if needed. Some algorithms output the XY with the Y-coordinates flipped.
If the image overlays do not align to the cells, try again by setting this to `False`.
overlay : string, optional
Name of the column with any categorical data such as phenotypes or clusters.
overlay_category : list, optional
If only specfic categories within the overlay column is needed, pass their names as a list.
If None, all categories will be used.
markers : list, optional
Markers to be included. If none, all markers will be displayed.
channel_names : list, optional
List of channels in the image in the exact order as image. The default is `adata.uns['all_markers']`
x_coordinate : string, optional
X axis coordinate column name in AnnData object.
y_coordinate : string, optional
Y axis coordinate column name in AnnData object.
point_size : int, optional
point size in the napari plot.
imageid : string, optional
Column name of the column containing the image id.
subset : string, optional
imageid of a single image to be subsetted for analyis. Only useful when multiple images are being analyzed together.
**kwargs
Other arguments that can be passed to napari viewer
Returns:
Napari Viewer.
Example:
```python
image_path = '/Users/aj/Desktop/ptcl_tma/image.ome.tif'
sm.pl.image_viewer (image_path, adata, overlay='phenotype',overlay_category=None,
markers=['CD31', "CD3D","DNA11",'CD19','CD45','CD163','FOXP3'],
point_size=7,point_color='white')
```
"""
#TODO
# - ADD Subset markers for ZARR ssection
# - Ability to use ZARR metadata if available
# adding option to load just the image without an adata object
if adata is None:
channel_names = None
else:
# All operations on the AnnData object is performed first
# Plot only the Image that is requested
if subset is not None:
adata = adata[adata.obs[imageid] == subset]
# Recover the channel names from adata
if channel_names == 'default':
channel_names = adata.uns['all_markers']
else:
channel_names = channel_names
# Index of the marker of interest and corresponding names
if markers is None:
idx = list(range(len(channel_names)))
channel_names = channel_names
else:
idx = []
for i in markers:
idx.append(list(channel_names).index(i))
channel_names = markers
# Load the segmentation mask
if seg_mask is not None:
seg_m = tiff.imread(seg_mask)
if (len(seg_m.shape) > 2) and (seg_m.shape[0] > 1):
seg_m = seg_m[0]
# Operations on the OME TIFF image is performed next
# check the format of image
if os.path.isfile(image_path) is True:
image = tiff.TiffFile(image_path, is_ome=False) #is_ome=False
z = zarr.open(image.aszarr(), mode='r') # convert image to Zarr array
# Identify the number of pyramids
n_levels = len(image.series[0].levels) # pyramid
# If and if not pyramids are available
if n_levels > 1:
pyramid = [da.from_zarr(z[i]) for i in range(n_levels)]
multiscale = True
else:
pyramid = da.from_zarr(z)
multiscale = False
# subset channels of interest
if markers is not None:
if n_levels > 1:
for i in range(n_levels-1):
pyramid[i] = pyramid[i][idx, :, :]
n_channels = pyramid[0].shape[0] # identify the number of channels
else:
pyramid = pyramid[idx, :, :]
n_channels = pyramid.shape[0] # identify the number of channels
else:
if n_levels > 1:
n_channels = pyramid[0].shape[0]
else:
n_channels = pyramid.shape[0]
# check if channel names have been passed to all channels
if channel_names is not None:
assert n_channels == len(channel_names), (
f'number of channel names ({len(channel_names)}) must '
f'match number of channels ({n_channels})'
)
# Load the viewer
viewer = napari.view_image(
pyramid, multiscale=multiscale, channel_axis=0,
visible=False,
name = None if channel_names is None else channel_names,
#**kwargs
)
# Operations on the ZARR image
# check the format of image
if os.path.isfile(image_path) is False:
#print(image_path)
viewer = napari.Viewer()
viewer.open(image_path, multiscale=True,
visible=False,
name = None if channel_names is None else channel_names)
# Add the seg mask
if seg_mask is not None:
viewer.add_labels(seg_m, name='segmentation mask', visible=False)
# Add phenotype layer function
def add_phenotype_layer (adata, overlay, phenotype_layer,x,y,viewer,point_size,point_color):
coordinates = adata[adata.obs[overlay] == phenotype_layer]
# Flip Y AXIS if needed
if flip_y is True:
coordinates = pd.DataFrame({'y': coordinates.obs[y],'x': coordinates.obs[x]})
else:
coordinates = pd.DataFrame({'x': coordinates.obs[x],'y': coordinates.obs[y]})
#points = coordinates.values.tolist()
points = coordinates.values
if point_color is None:
r = lambda: random.randint(0,255) # random color generator
point_color = '#%02X%02X%02X' % (r(),r(),r()) # random color generator
viewer.add_points(points, size=point_size,face_color=point_color,visible=False,name=phenotype_layer)
if overlay is not None:
# categories under investigation
if overlay_category is None:
available_phenotypes = list(adata.obs[overlay].unique())
else:
available_phenotypes = overlay_category
# Run the function on all phenotypes
for i in available_phenotypes:
add_phenotype_layer (adata=adata, overlay=overlay,
phenotype_layer=i, x=x_coordinate, y=y_coordinate, viewer=viewer,
point_size=point_size,point_color=point_color)
|