81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236 | def mcmicro_to_scimap (feature_table_path,remove_dna=True,remove_string_from_name=None,
log=True,drop_markers=None,random_sample=None, unique_CellId=True,
CellId='CellID',split='X_centroid',custom_imageid=None,
min_cells=None, output_dir=None):
"""
Parameters:
feature_table_path : list
List of path to the single-cell spatial feature tables. Each Image should have a unique path supplied.
remove_dna : bool, optional
Remove the DNA channels from the final output. Looks for channels with the string 'dna' in it.
remove_string_from_name : string, optional
Used to celan up channel names. If a string is given, that particular string will be removed from all marker names.
If multiple images are passed, just use the string that appears in the first image.
log : bool, optional
Log the data (log1p transformation will be applied).
drop_markers : list, optional
List of markers to drop from the analysis. e.g. ["CD3D", "CD20"].
random_sample : int, optional
Randomly sub-sample the data with the desired number of cells.
CellId : string, optional
Name of the column that contains the cell ID.
unique_CellId: bool, optional
By default, the function creates a unique name for each cell/row by combining the
`CellId` and `imageid`. If you wish not to perform this operation please pass `False`.
The function will use whatever is under `CellId`. In which case, please be careful to pass unique `CellId`
especially when loading multiple datasets togeather.
split : string, optional
To split the CSV into counts table and meta data, pass in the name of the column
that immediately follows the marker quantification.
custom_imageid: string, optional
Pass a user defined Image ID. By default the name of the CSV file is used.
min_cells: int, optional
If these many cells are not in the image, the image will be dropped.
Particulary useful when importing multiple images.
output_dir: string, optional
Path to output directory.
Returns:
AnnData Object
Example:
```python
feature_table_path = ['/Users/aj/whole_sections/PTCL1_450.csv',
'/Users/aj/whole_sections/PTCL2_552.csv']
adata = sm.pp.mcmicro_to_scimap (feature_table_path, drop_markers= ['CD21', 'ACTIN'], random_sample=5000)
```
"""
# feature_table_path list or string
if isinstance(feature_table_path, str):
feature_table_path = [feature_table_path]
feature_table_path = [pathlib.Path(p) for p in feature_table_path]
# Import data based on the location provided
def load_process_data (image):
# Print the data that is being processed
print(f"Loading {image.name}")
d = pd.read_csv(image)
# If the data does not have a unique image ID column, add one.
if 'imageid' not in d.columns:
if custom_imageid is not None:
imid = custom_imageid
else:
#imid = random.randint(1000000,9999999)
imid = image.stem
d['imageid'] = imid
# Unique name for the data
if unique_CellId is True:
d.index = d['imageid'].astype(str)+'_'+d[CellId].astype(str)
else:
d.index = d[CellId]
# move image id and cellID column to end
cellid_col = [col for col in d.columns if col != CellId] + [CellId]; d = d[cellid_col]
imageid_col = [col for col in d.columns if col != 'imageid'] + ['imageid']; d = d[imageid_col]
# If there is INF replace with zero
d = d.replace([np.inf, -np.inf], 0)
# Return data
return d
# Apply function to all images and create a master dataframe
r_load_process_data = lambda x: load_process_data(image=x) # Create lamda function
all_data = list(map(r_load_process_data, list(feature_table_path))) # Apply function
# Merge all the data into a single large dataframe
for i in range(len(all_data)):
all_data[i].columns = all_data[0].columns
entire_data = pd.concat(all_data, axis=0, sort=False)
# Randomly sample the data
if random_sample is not None:
entire_data = entire_data.sample(n=random_sample,replace=False)
#Remove the images that contain less than a defined threshold of cells (min_cells)
if min_cells is not None:
to_drop = entire_data['imageid'].value_counts()[entire_data['imageid'].value_counts() < min_cells].index
entire_data = entire_data[~entire_data['imageid'].isin(to_drop)]
print('Removed Images that contained less than '+str(min_cells)+' cells: '+ str(to_drop.values))
# Split the data into expression data and meta data
# Step-1 (Find the index of the column with name Area)
split_idx = entire_data.columns.get_loc(split)
meta = entire_data.iloc [:,split_idx:]
# Step-2 (select only the expression values)
entire_data = entire_data.iloc [:,:split_idx]
# Rename the columns of the data
if remove_string_from_name is not None:
entire_data.columns = entire_data.columns.str.replace(remove_string_from_name, '')
# Save a copy of the column names in the uns space of ANNDATA
markers = list(entire_data.columns)
# Remove DNA channels
if remove_dna is True:
entire_data = entire_data.loc[:,~entire_data.columns.str.contains('dna', case=False)]
# Drop unnecessary markers
if drop_markers is not None:
if isinstance(drop_markers, str):
drop_markers = [drop_markers]
entire_data = entire_data.drop(columns=drop_markers)
# Create an anndata object
adata = ad.AnnData(entire_data)
adata.obs = meta
adata.uns['all_markers'] = markers
# Add log data
if log is True:
adata.raw = adata
adata.X = np.log1p(adata.X)
# Save data if requested
if output_dir is not None:
output_dir = pathlib.Path(output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
imid = feature_table_path[0].stem
adata.write(output_dir / f'{imid}.h5ad')
#adata.write(str(output_dir) + '/' + imid + '.h5ad')
else:
# Return data
return adata
|